in

Functional diversity effects on productivity increase with age in a forest biodiversity experiment

[adace-ad id="91168"]
  • 1.

    Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 2.

    Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).

    Google Scholar 

  • 3.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).

  • 8.

    Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).

    Google Scholar 

  • 9.

    Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).

    Google Scholar 

  • 16.

    Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).

    Google Scholar 

  • 17.

    Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).

    CAS 

    Google Scholar 

  • 18.

    Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).

    Google Scholar 

  • 19.

    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..

  • 20.

    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  • 26.

    Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).

    Google Scholar 

  • 32.

    Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).

    Google Scholar 

  • 33.

    Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).

    Google Scholar 

  • 37.

    Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).

    Google Scholar 

  • 38.

    Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).

    Google Scholar 

  • 39.

    Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).

    Google Scholar 

  • 40.

    Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).

  • 41.

    Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).

    Google Scholar 

  • 42.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).

    Google Scholar 

  • 47.

    Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).

    Google Scholar 

  • 48.

    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).

    Google Scholar 

  • 51.

    Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).

    Google Scholar 

  • 55.

    Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).

    Google Scholar 

  • 56.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).

    Google Scholar 

  • 58.

    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).

  • 59.

    Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).

    Google Scholar 

  • 60.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).

    Google Scholar 

  • 62.

    Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Google Scholar 

  • 64.

    Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).

    Google Scholar 

  • 65.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 66.

    Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).

  • 67.

    Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).

    CAS 

    Google Scholar 

  • 68.

    Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).

  • 70.

    Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range