O’Connor. Whale Watching Worldwide: Tourism Numbers, Expenditures and Expanding Economic Benefits. A special report from the International Fund for Animal Welfare Yarmouth, USA. Prepared by Economists at Large. www.ecolarge.com (2009). Accessed 15 Apr 2021.
Cisneros-Montemayor, A. M., Sumaila, U. R., Kaschner, K. & Pauly, D. The global potential for whale watching. Mar. Policy 34, 1273–1278 (2010).
Google Scholar
Parsons, E. C. M. The negative impacts of whale-watching. J. Mar. Biol. 2012, 1–9 (2012).
Google Scholar
Hoyt, E. & Hvenegaard, G. T. A review of whale-watching and whaling. Coast. Manag. 30, 381–399 (2002).
Google Scholar
Cunningham, P. A., Huijbens, E. H. & Wearing, S. L. From whaling to whale watching: Examining sustainability and cultural rhetoric. J. Sustain. Tour. 20, 143–161 (2012).
Google Scholar
Senigaglia, V. et al. Meta-analyses of whale-watching impact studies: Comparisons of cetacean responses to disturbance. Mar. Ecol. Prog. Ser. 542, 251–263 (2016).
Google Scholar
Bejder, L. et al. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv. Biol. 20, 1791–1798 (2006).
Google Scholar
Lusseau, D., Slooten, L. & Currey, R. J. C. Unsustainable dolphin-watching tourism in Fiordland, New Zealand. Tour. Mar. Environ. 3, 173–178 (2006).
Google Scholar
Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mamm. Sci. 18, 394–418 (2002).
Google Scholar
Sprogis, K. R., Videsen, S. & Madsen, P. T. Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. Elife 9, 1–17 (2020).
Google Scholar
Au, W. W. L. The Sonar of Dolphins (Springer, 1993).
Google Scholar
Tyack, P. L. & Clark, C. W. Communication and acoustic behavior of dolphins and whales. In Hearing by Whales and Dolphins (eds. Au, W. W. L., Fay, R. R. & Popper, A. N.) 156–224 (Springer, 2000). https://doi.org/10.1007/978-1-4612-1150-1_4.
Lesage, V., Barrette, C., Kingsley, M. C. S. & Sjare, B. The effect of vessel noise on the vocal behavior of belugas in the St. Lawrence River estuary, Canada. Mar. Mamm. Sci. 15, 65–84 (1999).
Google Scholar
Jensen, F. H. et al. Vessel noise effects on delphinid communication. Mar. Ecol. Prog. Ser. 395, 161–175 (2009).
Google Scholar
Pirotta, E. et al. Vessel noise affects beaked whale behavior: Results of a dedicated acoustic response study. PLoS One 7, e42535 (2012).
Google Scholar
Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
Google Scholar
Andrew, R. K., Howe, B. M. & Mercer, J. A. Long-time trends in ship traffic noise for four sites off the North American West Coast. J. Acoust. Soc. Am. 129, 642–651 (2011).
Google Scholar
Miksis-Olds, J. L. & Nichols, S. M. Is low frequency ocean sound increasing globally?. J. Acoust. Soc. Am. 139, 501–511 (2016).
Google Scholar
Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in Baleen whales. Ann. N. Y. Acad. Sci. 188, 110–141 (1971).
Google Scholar
Melcón, M. L. et al. Blue whales respond to anthropogenic noise. PLoS One 7, e32681 (2012).
Google Scholar
Romagosa, M. et al. Underwater ambient noise in a baleen whale migratory habitat off the Azores. Front. Mar. Sci. 4, 1–14 (2017).
Google Scholar
Aguilar Soto, N. et al. Does intense ship noise disrupt foraging in deep-diving cuvier’s beaked whales (Ziphius cavirostris)?. Mar. Mamm. Sci. 22, 690–699 (2006).
Google Scholar
Wisniewska, D. M. et al. High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc. R. Soc. B Biol. Sci. 285, 20172314 (2018).
Google Scholar
Hermannsen, L., Beedholm, K., Tougaard, J. & Madsen, P. T. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 136, 1640–1653 (2014).
Google Scholar
Wladichuk, J., Hannay, D. E., MacGillivray, A. O., Li, Z. & Thornton, S. J. Systematic source level measurements of whale watching vessels and other small boats. J. Ocean Technol. 14, 108–126 (2019).
Arranz, P., Aguilar de Soto, N., Madsen, P. T. & Sprogis, K. R. Whale-watch vessel noise levels with applications to whale-watching guidelines and conservation. Mar. Policy 134, 104776 (2021).
Google Scholar
Higham, J., Bejder, L. & Williams, R. Whale-Watching: Sustainable Tourism and Ecological Management (Cambridge University Press, 2014).
Google Scholar
Montero, R. & Arechavaleta, M. Distribution patterns: Relationships between depths, sea surface temperature, and habitat use of Short-finned pilot whales south-west of Tenerife. Eur. Res. Cetaceans 10, 193–198 (1996).
Servidio, A. et al. Site fidelity and movement patterns of short-finned pilot whales within the Canary Islands: Evidence for resident and transient populations. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 227–241 (2019).
Google Scholar
Würsig, B. Ethology and Behavioral Ecology of Odontocetes (Springer, 2019). https://doi.org/10.1007/978-3-030-16663-2_23.
Google Scholar
Sequeira, M. et al. Review of whalewatching activities in mainland Portugal, the Azores, Madeira and Canary archipelagos and the Strait of Gibraltar. J. Cetacean Res. Manag. SC61/WW11, 1–40 (2009).
IWC whale-watching handbook. https://wwhandbook.iwc.int/es/case-studies/canary-islands-spain#Accessed 15 Apr 2021.
Hoyt, E. Tourism. In Encyclopedia of Marine Mammals 1010–1014 (2018). https://doi.org/10.1016/B978-0-12-804327-1.00262-4.
Kasuya, T. & Matsui, S. Age determination and growth of the short-finned pilot whale off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst. 35, 57–91 (1984).
Reddy, M., Kamolnick, T., Skaar, D., Curry, C. & Ridgway, S. Bottlenose dolphins: Energy consumption during pregnancy, lactation, and growth. Int. Mar. Mammal Trainers Assoc. Conf. Proc. 30–37 (1991).
Srinivasan, M., Swannack, T. M., Grant, W. E., Rajan, J. & Würsig, B. To feed or not to feed? Bioenergetic impacts of fear-driven behaviors in lactating dolphins. Ecol. Evol. 8, 1384–1398 (2018).
Google Scholar
Marsh, H. & Kasuya, T. Changes in the role of a female pilot whale with age. In Dolphin Societies (eds. Pryor, K. & Norris, K.S.) 281–286 (University of California Press, 1991).
Augusto, J. F., Frasier, T. R. & Whitehead, H. Characterizing alloparental care in the pilot whale (Globicephala melas) population that summers off Cape Breton, Nova Scotia, Canada. Mar. Mamm. Sci. 33, 440–456 (2017).
Google Scholar
Quick, N., Scott-hayward, L., Sadykova, D., Nowacek, D. & Read, A. Effects of a scientific echo sounder on the behavior of short-finned pilot whales (Globicephala macrorhynchus). Can. J. Fish. Aquat. Sci. 74, 716–726 (2017).
Google Scholar
Würsig, B. & Jefferson, T. A. Methods of photo-identification for small cetaceans. Report of the International Whaling Commission (1990).
Greenhow, D. R., Brodsky, M. C., Lingenfelser, R. G. & Mann, D. A. Hearing threshold measurements of five stranded short-finned pilot whales (Globicephala macrorhynchus). J. Acoust. Soc. Am. 135, 531–536 (2014).
Google Scholar
Tougaard, J. & Beedholm, K. Practical implementation of auditory time and frequency weighting in marine bioacoustics. Appl. Acoust. 145, 137–143 (2019).
Google Scholar
Pérez, J. M., Jensen, F. H., Rojano-Doñate, L. & Aguilar de Soto, N. Different modes of acoustic communication in deep-diving short-finned pilot whales (Globicephala macrorhynchus). Mar. Mamm. Sci. 33, 59–79 (2017).
Google Scholar
Pacini, A. F. et al. Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials. J. Exp. Biol. 213, 3138–3143 (2010).
Google Scholar
Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 1–9 (2016).
Google Scholar
Christiansen, F., Nielsen, M. L. K., Charlton, C., Bejder, L. & Madsen, P. T. Southern right whales show no behavioral response to low noise levels from a nearby unmanned aerial vehicle. Mar. Mamm. Sci. 36, 953–963 (2020).
Google Scholar
Giles, A. B. et al. Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 677–684 (2021).
Google Scholar
Nielsen, M. L. K., Sprogis, K. R., Bejder, L., Madsen, P. T. & Christiansen, F. Behavioural development in southern right whale calves. Mar. Ecol. Prog. Ser. 629, 219–234 (2019).
Google Scholar
Hofmann, B., Scheer, M. & Behr, I. P. Underwater behaviors of short-finned pilot whales (Globicephala macrorhynchus) off Tenerife. Mammalia 68, 221–224 (2004).
Google Scholar
Lockyer, C. All creatures great and smaller: A study in cetacean life history energetics. J. Mar. Biol. Assoc. U. K. 87, 1035–1045 (2007).
Google Scholar
Hin, V., Harwood, J. & de Roos, A. M. Bio-energetic modeling of medium-sized cetaceans shows high sensitivity to disturbance in seasons of low resource supply. Ecol. Appl. 29, 1–19 (2019).
Google Scholar
Christiansen, F., Rasmussen, M. H. & Lusseau, D. Inferring energy expenditure from respiration rates in minke whales to measure the effects of whale watching boat interactions. J. Exp. Mar. Biol. Ecol. 459, 96–104 (2014).
Google Scholar
Mann, J., Connor, R. C., Tyack, P. L. & Whitehead, H. Cetacean Societies: Field Studies of Dolphins and Whales (The University of Chicago Press, 2000).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. (2018).
National Marine Fisheries Service. Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing underwater acoustic thresholds for onset of permanent and temporary threshold shifts. NOAA Technical Memorandum NMFS-OPR-55. (2016).
Heimlich-Boran, J. R. Social Organisation of the Short-finned Pilot Whale, Globicephala macrorhynchus, with Special Reference to the Comparative Social Ecology of Delphinids (University of Cambridge, 1993).
Hastie, G. D., Wilson, B., Tufft, L. H. & Thompson, P. M. Bottlenose dolphins increase breathing synchrony in response to boat traffic. Mar. Mamm. Sci. 19, 74–084 (2003).
Google Scholar
Williams, R. & Noren, D. P. Swimming speed, respiration rate, and estimated cost of transport in adult killer whales. Mar. Mamm. Sci. 25, 327–350 (2009).
Google Scholar
Senigaglia, V. & Whitehead, H. Synchronous breathing by pilot whales. Mar. Mamm. Sci. 28, 213–219 (2012).
Google Scholar
Aguilar Soto, N. et al. Cheetahs of the deep sea: Deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J. Anim. Ecol. 77, 936–947 (2008).
Google Scholar
Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91 (2016).
Google Scholar
Owen, K., Andrews, R. D., Baird, R. W., Schorr, G. S. & Webster, D. L. Lunar cycles influence the diving behavior and habitat use of short-finned pilot whales around the main Hawaiian Islands. Mar. Ecol. Prog. Ser. 629, 193–206 (2019).
Google Scholar
Kasuya, T. & Marsh, H. Life history and reproductive biology of the short-finned pilot whale, Globicephala macrorhynchus, off the Pacific coast of Japan. Rep. Int. Whal. Commun. Spec. Iss. 6, 259–310 (1984).
Barton, E. et al. The transition zone of the canary current upwelling region. Prog. Ocean. 41, 455–504 (1998).
Google Scholar
Olson, P. A. Pilot Whales: Globicephala melas and G. macrorhynchus. In Encyclopedia of Marine Mammals, 3rd ed (eds. Würsig, B., Thewissen, J. G. M. & Kovacs, K. M.) 701–705 (Academic Press, 2018). https://doi.org/10.1016/B978-0-12-804327-1.00194-1.
Puig-Lozano, R. et al. Retrospective study of fishery interactions in stranded cetaceans, Canary Islands. Front. Vet. Sci. 7, 1–15 (2020).
Google Scholar
Almunia, J., Delponti, P. & Rosa, F. Using automatic identification system (AIS) data to estimate whale watching effort. Front. Mar. Sci. 8, 827 (2021).
Google Scholar
Schlundt, C. E. et al. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus). J. Acoust. Soc. Am. 129, 1111–1116 (2011).
Google Scholar
Visser, F. et al. Risso’s dolphins alter daily resting pattern in response to whale watching at the Azores. Mar. Mamm. Sci. 27, 366–381 (2011).
Google Scholar
Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncatus) behaviour. Biol. Conserv. 117, 299–307 (2004).
Google Scholar
Stensland, E. & Berggren, P. Behavioural changes in female Indo-Pacific bottlenose dolphins in response to boat-based tourism. Mar. Ecol. Prog. Ser. 332, 225–234 (2007).
Google Scholar
Jensen, F. H., Perez, J. M., Johnson, M., Soto, N. A. & Madsen, P. T. Calling under pressure: Short-finned pilot whales make social calls during deep foraging dives. Proc. R. Soc. B Biol. Sci. 278, 3017–3025 (2011).
Google Scholar
Kiszka, J. J., Caputo, M., Méndez-Fernandez, P. & Fielding, R. Feeding ecology of elusive Caribbean killer whales inferred from bayesian stable isotope mixing models and whalers’ ecological knowledge. Front. Mar. Sci. 8, 1–11 (2021).
Google Scholar
Whitehead, H. Babysitting, dive synchrony, and indications of alloparental care in sperm whales. Behav. Ecol. Sociobiol. 38, 237–244 (1996).
Google Scholar
Konrad, C. M. Kinship in Sperm Whale Society: Effects on Association, Alloparental Care and Vocalization (Dalhousie University, 2017).
Leung, E. S., Vergara, V. & Barrett-Lennard, L. G. Allonursing in captive belugas (Delphinapterus leucas). Zoo Biol. 29, 633–637 (2010).
Google Scholar
Houston, A. I. & Carbone, C. The optimal allocation of time during the diving cycle. Behav. Ecol. 3, 255–265 (1992).
Google Scholar
Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).
Google Scholar
Aoki, K., Sato, K., Isojunno, S., Narazaki, T. & Miller, P. J. O. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales. J. Exp. Biol. 220, 3802–3811 (2017).
Google Scholar
New, L. F. et al. The modelling and assessment of whale-watching impacts. Ocean Coast. Manag. 115, 10–16 (2015).
Google Scholar
Parsons, M. J. G., Duncan, A. J., Parsons, S. K. & Erbe, C. Reducing vessel noise: An example of a solar-electric passenger ferry. J. Acoust. Soc. Am. 147, 3575–3583 (2020).
Google Scholar
Dale, S. J., Hebner, R. E. & Sulligoi, G. Electric ship technologies. Proc. IEEE 103, 2225–2228 (2015).
Google Scholar
Anwar, S., Zia, M. Y. I., Rashid, M., De Rubens, G. Z. & Enevoldsen, P. Towards ferry electrification in the maritime sector. Energies 13, 1–22 (2020).
Google Scholar
Filby, N. E., Christiansen, F., Scarpaci, C. & Stockin, K. A. Effects of swim-with-dolphin tourism on the behaviour of a threatened species, the Burrunan dolphin Tursiops Australis. Endanger. Species Res. 32, 479–490 (2017).
Google Scholar
Sprogis, K. R., Bejder, L., Hanf, D. & Christiansen, F. Behavioural responses of migrating humpback whales to swim-with-whale activities in the Ningaloo Marine Park, Western Australia. J. Exp. Mar. Bio. Ecol. 522, 151254 (2020).
Google Scholar
Source: Ecology - nature.com