in

Insect visual sensitivity to long wavelengths enhances colour contrast of insects against vegetation

  • 1.

    Cummings, M. E., Rosenthal, G. G. & Ryan, M. J. A private ultraviolet channel in visual communication. Proc. R. Soc. B-Biol. Sci. 270, 897–904. https://doi.org/10.1098/rspb.2003.2334 (2003).

    Article 

    Google Scholar 

  • 2.

    Tedore, C. & Nilsson, D. E. Avian UV vision enhances leaf surface contrasts in forest environments. Nat. Commun. https://doi.org/10.1038/s41467-018-08142-5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Qi, Y. D., Bai, S. J. & Heisler, G. M. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season. Agric. For. Meteorol. 120, 229–240. https://doi.org/10.1016/j.agrformet.2003.08.018 (2003).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Mollon, J. D. “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38. https://doi.org/10.1242/jeb.146.1.21 (1989).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Osorio, D. & Vorobyev, M. Photoreceptor sectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752. https://doi.org/10.1098/rspb.2005.3156 (2005).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Osorio, D. & Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 48, 2042–2051. https://doi.org/10.1016/j.visres.2008.06.018 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Bowmaker, J. K. & Dartnall, H. J. A. Visual pigments of rods and cones in a human retina. J. Physiol. Lond. 298, 501–511. https://doi.org/10.1113/jphysiol.1980.sp013097 (1980).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Bowmaker, J. K. & Hunt, D. M. Evolution of vertebrate visual pigments. Curr. Biol. 16, R484–R489. https://doi.org/10.1016/j.cub.2006.06.016 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).

    Article 

    Google Scholar 

  • 10.

    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510. https://doi.org/10.1146/annurev.ento.46.1.471 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Ogawa, Y., Kinoshita, M., Stavenga, D. G. & Arikawa, K. Sex-specific retinal pigmentation results in sexually dimorphic long-wavelength-sensitive photoreceptors in the eastern pale clouded yellow butterfly, Colias erate. J. Exp. Biol. 216, 1916–1923. https://doi.org/10.1242/jeb.083485 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Kelber, A. Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630 (1999).

    Article 

    Google Scholar 

  • 13.

    Osorio, D. & Vorobyev, M. Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. B Biol. Sci. 263, 593–599. https://doi.org/10.1098/rspb.1996.0089 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Zaccardi, G., Kelber, A., Sison-Mangus, M. P. & Briscoe, A. D. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209, 1944–1955. https://doi.org/10.1242/jeb.02207 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Wakakuwa, M., Stavenga, D. G., Kurasawa, M. & Arikawa, K. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J. Exp. Biol. 207, 2803–2810. https://doi.org/10.1242/jeb.01078 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Satoh, A. et al. Red-shift of spectral sensitivity due to screening pigment migration in the eyes of a moth, Adoxophyes orana. Zool. Lett. https://doi.org/10.1186/s40851-017-0075-6 (2017).

    Article 

    Google Scholar 

  • 17.

    Pirih, P. et al. The giant butterfly-moth Paysandisia archon has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 639–651. https://doi.org/10.1007/s00359-018-1267-z (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Cronin, T. W., Jarvilehto, M., Weckstrom, M. & Lall, A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A Sens. Neural Behav. Physiol. 186, 1–12. https://doi.org/10.1007/s003590050001 (2000).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Lall, A. B. et al. Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 629–638. https://doi.org/10.1007/s00359-010-0549-x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Frentiu, F. D. et al. Adaptive evolution of color vision as seen through the eyes of butterflies. Proc. Natl. Acad. Sci. U.S.A. 104, 8634–8640. https://doi.org/10.1073/pnas.0701447104 (2007).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Liénard, M. A. et al. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2008986118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Saito, T. et al. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. Zool. Lett. https://doi.org/10.1186/s40851-019-0150-2 (2019).

    Article 

    Google Scholar 

  • 23.

    Enright, J. M. et al. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr. Biol. 25, 3048–3057. https://doi.org/10.1016/j.cub.2015.10.018 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Martin, M., Le Galliard, J. F., Meylan, S. & Loew, E. R. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. J. Exp. Biol. 218, 458–465. https://doi.org/10.1242/jeb.115923 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Ala-Laurila, P., Donner, K. & Koskelainen, A. Thermal activation and photoactivation of visual pigments. Biophys. J. 86, 3653–3662. https://doi.org/10.1529/biophysj.103.035626 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Ala-Laurila, P., Pahlberg, J., Koskelainen, A. & Donner, K. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vis. Res. 44, 2153–2158. https://doi.org/10.1016/j.visres.2004.03.031 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Barlow, H. B. Purkinje shift and retinal noise. Nature 179, 255–256. https://doi.org/10.1038/179255b0 (1957).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Koskelainen, A., Ala-Laurila, P., Fyhrquist, N. & Donner, K. Measurement of thermal contribution to photoreceptor sensitivity. Nature 403, 220–223. https://doi.org/10.1038/35003242 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Luo, D. G., Yue, W. W. S., Ala-Laurila, P. & Yau, K. W. Activation of visual pigments by light and heat. Science 332, 1307–1312. https://doi.org/10.1126/science.1200172 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Rieke, F. & Baylor, D. A. Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186. https://doi.org/10.1016/s0896-6273(00)81148-4 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual pigments and photoreceptors. In Visual Ecology, pp. 37–65: Princeton University Press.

  • 32.

    Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rstb.2016.0065 (2017).

    Article 

    Google Scholar 

  • 33.

    Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724. https://doi.org/10.1086/681021 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 34.

    Hawkeswood, T. Observations on some Buprestidae (Coleoptera) from the Blue Mountains, N.S.W.. Aust. Zool. 19, 257–275 (1978).

    Google Scholar 

  • 35.

    Hawkeswood, T. Observations on two sympatric species of Buprestidae (Coleoptera) from sand dunes on the north coast of New South Wales. Victorian Naturalist 98, 146–151 (1981).

    Google Scholar 

  • 36.

    Hawkeswood, T. Observations on some jewel beetles (Coleoptera Buprestidae) from the Armidale district, North-eastern New South Wales. Vic. Nat. 98, 152–155 (1981).

    Google Scholar 

  • 37.

    Poland, T. M., Chen, Y. G., Koch, J. & Pureswaran, D. Review of the emerald ash borer (Coleoptera: Buprestidae), life history, mating behaviours, host plant selection, and host resistance. Can. Entomol. 147, 252–262. https://doi.org/10.4039/tce.2015.4 (2015).

    Article 

    Google Scholar 

  • 38.

    Bellamy, C. L., Williams, G., Hasenpusch, J. & Sundholm, A. A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae), with additional new records. Insecta Mundi, 1–172 (2013).

  • 39.

    Domingue, M. J. et al. Field observations of visual attraction of three European oak buprestid beetles toward conspecific and heterospecific models. Entomol. Exp. Appl. 140, 112–121. https://doi.org/10.1111/j.1570-7458.2011.01139.x (2011).

    Article 

    Google Scholar 

  • 40.

    Domingue, M. J. et al. Differences in spectral selectivity between stages of visually guided mating approaches in a buprestid beetle. J. Exp. Biol. 219, 2837–2843 (2016).

    PubMed 

    Google Scholar 

  • 41.

    Pureswaran, D. S. & Poland, T. M. Effects of visual silhouette, leaf size and host species on feeding preference by adult emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Great Lakes Entomol. 42, 4 (2018).

    Google Scholar 

  • 42.

    Crook, D. J. et al. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum. J. Econ. Entomol. 102, 2160–2169 (2009).

    Article 

    Google Scholar 

  • 43.

    Lord, N. P. et al. A cure for the blues: Opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol. Biol. 16, 107 (2016).

    Article 

    Google Scholar 

  • 44.

    Meglič, A., Ilić, M., Quero, C., Arikawa, K. & Belušič, G. Two chiral types of randomly rotated ommatidia are distributed across the retina of the flathead oak borer Coraebus undatus (Coleoptera: Buprestidae). J. Exp. Biol. 223, jeb225920. https://doi.org/10.1242/jeb.225920 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Chen, Y. G. & Poland, T. M. Biotic and abiotic factors affect green ash volatile production and emerald Ash borer adult feeding preference. Environ. Entomol. 38, 1756–1764. https://doi.org/10.1603/022.038.0629 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Dartnall, H. J. A. Visual pigment. Trans. Zool. Soc. Lond. 33, 147–152. https://doi.org/10.1111/j.1096-3642.1976.tb00047.x (1976).

    Article 

    Google Scholar 

  • 48.

    Arikawa, K., Scholten, D. G. W., Kinoshita, M. & Stavenga, D. G. Tuning of photoreceptor spectral sensitivities by red and yellow pigments in the butterfly Papilio xuthus. Zool. Sci. 16, 17–24. https://doi.org/10.2108/zsj.16.17 (1999).

    Article 

    Google Scholar 

  • 49.

    Das, D., Wilkie, S. E., Hunt, D. M. & Bowmaker, J. K. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision. Res. 39, 2801–2815. https://doi.org/10.1016/s0042-6989(99)00023-1 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Sison-Mangus, M. P., Bernard, G. D., Lampel, J. & Briscoe, A. D. Beauty in the eye of the beholder: The two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J. Exp. Biol. 209, 3079–3090. https://doi.org/10.1242/jeb.02360 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Bernard, G. D. Red-absorbing visual pigment of butterflies. Science 203, 1125. https://doi.org/10.1126/science.203.4385.1125 (1979).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Martínez-Harms, J. et al. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 198, 451–463. https://doi.org/10.1007/s00359-012-0722-5 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Stavenga, D. G. & Arikawa, K. Photoreceptor spectral sensitivities of the Small White butterfly Pieris rapae crucivora interpreted with optical modeling. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197, 373–385. https://doi.org/10.1007/s00359-010-0622-5 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J. & Cuthill, I. C. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 183, 621–633. https://doi.org/10.1007/s003590050286 (1998).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 351–358. https://doi.org/10.1098/rspb.1998.0302 (1998).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B. & Menzel, R. Colour thresholds and receptor noise: Behaviour and physiology compared. Vis. Res. 41, 639–653. https://doi.org/10.1016/s0042-6989(00)00288-1 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods in Ecology and Evolution 10, 1097–1107 (2019).

  • 58.

    Matsushita, A., Awata, H., Wakakuwa, M., Takemura, S. Y. & Arikawa, K. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis. Proc. R. Soc. B Biol. Sci. 279, 3482–3490. https://doi.org/10.1098/rspb.2012.0475 (2012).

    Article 

    Google Scholar 

  • 59.

    McCulloch, K. J. et al. Sexual dimorphism and retinal mosaic diversification following the evolution of a violet receptor in butterflies. Mol. Biol. Evol. 34, 2271–2284. https://doi.org/10.1093/molbev/msx163 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 61.

    R: A Language and environment for statistical computing (R Foundation for Statistical Computing, 2018).

  • 62.

    van der Kooi, C. J., Elzenga, J. T. M., Staal, M. & Stavenga, D. G. How to colour a flower: On the optical principles of flower coloration. Proc. R. Soc. B Biol. Sci. 283, 20160429. https://doi.org/10.1098/rspb.2016.0429 (2016).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Horler, D. N. H., Dockray, M. & Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4, 273–288. https://doi.org/10.1080/01431168308948546 (1983).

    Article 

    Google Scholar 

  • 64.

    Silberglied, R. E. Communication in the Ultraviolet. Annu. Rev. Ecol. Syst. 10, 373–398. https://doi.org/10.1146/annurev.es.10.110179.002105 (1979).

    Article 

    Google Scholar 

  • 65.

    Lind, O. Colour vision and background adaptation in a passerine bird, the zebra finch (Taeniopygia guttata). R. Soc. Open Sci. 3, 160383. https://doi.org/10.1098/rsos.160383 (2016).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Santiago, C. et al. Does conspicuousness scale linearly with colour distance? A test using reef fish. Proc. R. Soc. B Biol. Sci. 287, 20201456. https://doi.org/10.1098/rspb.2020.1456 (2020).

    Article 

    Google Scholar 

  • 67.

    Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. & Menzel, R. Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J. Comp. Physiol. A. 180, 235–243. https://doi.org/10.1007/s003590050044 (1997).

    Article 

    Google Scholar 

  • 68.

    Garcia, J. E., Spaethe, J. & Dyer, A. G. The path to colour discrimination is S-shaped: Behaviour determines the interpretation of colour models. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 203, 983–997. https://doi.org/10.1007/s00359-017-1208-2 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Hart, N. S., Bailes, H. J., Vorobyev, M., Marshall, N. J. & Collin, S. P. Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecol. 8, 21. https://doi.org/10.1186/1472-6785-8-21 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Vorobyev, M. Coloured oil droplets enhance colour discrimination. Proc. R. Soc. B Biol. Sci. 270, 1255–1261. https://doi.org/10.1098/rspb.2003.2381 (2003).

    Article 

    Google Scholar 

  • 71.

    Carleton, K. L. et al. Visual sensitivities tuned by heterochronic shifts in opsin gene expression. Bmc Biol. https://doi.org/10.1186/1741-7007-6-22 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Seki, T. & Vogt, K. Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 119, 53–64. https://doi.org/10.1016/s0305-0491(97)00322-2 (1998).

    Article 

    Google Scholar 

  • 73.

    Stavenga, D. G., Smits, R. P. & Hoenders, B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis. Res. 33, 1011–1017. https://doi.org/10.1016/0042-6989(93)90237-q (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Kinoshita, M. & Arikawa, K. Color and polarization vision in foraging Papilio. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 200, 513–526. https://doi.org/10.1007/s00359-014-0903-5 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 75.

    Vorobyev, M. & Menzel, R. Flower advertisement for insects: Bees, a case study. In Adaptive Mechanisms in the Ecology of Vision (eds S. N. Archer et al.) 537–553 (Springer Netherlands, 1999).

  • 76.

    Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. U.S.A. 88, 2783–2787. https://doi.org/10.1073/pnas.88.7.2783 (1991).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    McCulloch, K. J., Osorio, D. & Briscoe, A. D. Sexual dimorphism in the compound eye of Heliconius erato: A nymphalid butterfly with at least five spectral classes of photoreceptor. J. Exp. Biol. 219, 2377–2387. https://doi.org/10.1242/jeb.136523 (2016).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

    Bringing climate reporting to local newsrooms