in

Functional consequences of Palaeozoic reef collapse

  • 1.

    Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198. https://doi.org/10.1126/science.1182241 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Kiessling, W. Geological and biologic controls on the evolution of reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173–192. https://doi.org/10.1146/annurev.ecolsys.110308.120251(2009) (2009).

    Article 

    Google Scholar 

  • 3.

    Talent, J. A. Organic reef-building: Episodes of extinction and symbiosis?. Senckenb. Lethaea 69, 315–368 (1988).

    Google Scholar 

  • 4.

    Flügel, E. & Kiessling, W. Patterns of Phanerozoic reef crises. SEPM Spec. Public. 72, 691–733 (2002).

    Google Scholar 

  • 5.

    Pandolfi, J. M. & Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 7, 52–58. https://doi.org/10.1016/j.cosust.2013.11.020 (2014).

    Article 

    Google Scholar 

  • 6.

    Copper, P. Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Copper, P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. SEPM Spec. Public. 72, 181–238 (2002).

    Google Scholar 

  • 8.

    Copper, P. & Scotese, C. R. Megareefs in Middle Devonain supergreenhouse climates. Spec. Public. Geol. Soc. Am. 370, 209–230. https://doi.org/10.1130/0-8137-2370-1.209 (2003).

    Article 

    Google Scholar 

  • 9.

    Ries, J. B. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7(9), 2795–2849 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Scotese, C. R., Song, H., Mills, B. J. & van der Meer, D. G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2021.103503 (2021).

    Article 

    Google Scholar 

  • 11.

    Zapalski, M. K., Nowicki, J., Jakubowicz, M. & Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 416–429. https://doi.org/10.1016/j.palaeo.2017.09.028 (2017).

    Article 

    Google Scholar 

  • 12.

    Mora, C. I., Driese, S. G. & Seager, P. G. Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19(10), 1017–1020 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8(1), 1–8. https://doi.org/10.1038/ncomms14845 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Kiessling, W., Flügel, E. & Golonka, J. Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bull. 83(10), 1552–1587 (1999).

    Google Scholar 

  • 15.

    Burchette, T. P. European Devonian reefs: a review of current concepts and models. SEPM Spec. Public. 30, 85–142 (1981).

    Google Scholar 

  • 16.

    Ziegler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E. & Bambach, R. K. Paleozoic paleogeography. Annu. Rev. Earth Planet. Sci. 7(1), 473–502 (1979).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Belka, Z. & Narkiewicz, M. Devonian. In: McCann, T. The Geology of Central Europe, 1: Precambrian and Palaeozoic. 383–410. The Geological Society of London (2008).

  • 18.

    Golonka, J. Plate-tectonic maps of the Phanerozoic. SEPM Spec. Public. 72, 21–75 (2002).

    Google Scholar 

  • 19.

    Oczlon, M. S. Ocean currents and unconformities: the north Gondwana Middle Devonian. Geology 18(6), 509–512 (1990).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Dopieralska, J. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: Evidence from Nd isotope composition of conodonts. Geochem. Geophys. Geosyst. 10(3), Q03015. https://doi.org/10.1029/2008GC002247 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Jakubowicz, M. et al. At the southern limits of the Devonian reef zone: Palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geol. J. 54(1), 10–38. https://doi.org/10.1002/gj.3152 (2019).

    Article 

    Google Scholar 

  • 22.

    Wood, R. Reef evolution (Oxford University Press, 1999).

    Google Scholar 

  • 23.

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215(4539), 1501–1503 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40(2), 147–150. https://doi.org/10.1016/j.palaeo.2004.05.010 (2012).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. 113(42), E6325–E6334. https://doi.org/10.1073/pnas.1613094113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Zapalski, M. K., Wrzołek, T., Skompski, S. & Berkowski, B. Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland). Coral Reefs 36(3), 847–860. https://doi.org/10.1007/s00338-017-1575-8 (2017).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Zapalski, M. K., Baird, A. H., Bridge, T., Jakubowicz, M. & Daniell, J. Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef. Coral Reefs 40(2), 417–431. https://doi.org/10.1007/s00338-020-02048-9 (2021).

    Article 

    Google Scholar 

  • 28.

    Zapalski, M. K., Hubert, B. L., Nicollin, J. P., Mistiaen, B. & Brice, D. The palaeobiodiversity of stromatoporoids, tabulates and brachiopods in the Devonian of the Ardennes–changes through time. Bulletin de la Société Géologique de France 178(5), 383–390. https://doi.org/10.2113/gssgfbull.178.5.383 (2007).

    Article 

    Google Scholar 

  • 29.

    Zapalski, M., Pinte, E. & Mistiaen, B. Late Famennian? Chaetosalpinx in Yavorskia (Tabulata): the youngest record of tabulate endobionts. Acta Geol. Pol. 58(3), 321–324 (2008).

    Google Scholar 

  • 30.

    Zapalski, M. K. & Berkowski, B. The oldest species of? Yavorskia (Tabulata) from the upper Famennian of the Holy Cross Mountains (Poland). Acta Geol. Pol. 62(2), 197–204 (2012).

    Google Scholar 

  • 31.

    Zapalski, M. K., Berkowski, B. & Wrzołek, T. Tabulate corals after the Frasnian/Famennian crisis: a unique fauna from the Holy Cross Mountains, Poland. PLoS ONE 11(3), e0149767. https://doi.org/10.1371/journal.pone.0149767 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Stanley, G. D. Jr. & Lipps, J. H. Photosymbiosis: the driving force for reef success and failure. Paleontol. Soc. Paper 17, 33–60 (2011).

    Article 

    Google Scholar 

  • 33.

    Coates, A. G. & Jackson, J. B. C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13, 363–378 (1987).

    Article 

    Google Scholar 

  • 34.

    Zapalski, M. K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc B Biol. Sci. 281(1775), 20132663. https://doi.org/10.1098/rspb.2013.2663 (2014).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Zapalski, M. K. & Berkowski, B. The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38(1), 137–147. https://doi.org/10.1007/s00338-018-01761-w (2019).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Coates, A. G., & Oliver Jr, W. A. Coloniality of Coral Zoantharia: Animal Colonies.–3–29 (1973).

  • 37.

    Lipps, J. H., & Stanley, G. D. Photosymbiosis in past and present reefs. In Coral Reefs at the Crossroads (pp. 47–68). Springer (2016).

  • 38.

    Blieck, A., Brice, D., Fesir, R., Guillot, F., Majesté-Mejoulas, C., and Meillez, F., The Devonian of France and Belgium, in McMillan, A.F., Embry, A.F., and Glass, D.J., eds., Devonian of the world, Canadian Society of Petroleum Geologists, Calgary, 1, p. 359–400 (1988)

  • 39.

    Porter, J. W. Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am. Nat. 110, 731–742 (1976).

    ADS 
    Article 

    Google Scholar 

  • 40.

    McGhee, G. R. Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol. 370, 260–270 (2013).

    Article 

    Google Scholar 

  • 41.

    Aboussalam, Z. S. & Becker, R. T. The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 304(1–2), 136–164 (2011).

    Article 

    Google Scholar 

  • 42.

    Zambito, J. J., Brett, C. E., & Baird, G. C. The Late Middle Devonian (Givetian) Global Taghanic Biocrisis in its type area (northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In Earth and Life (pp. 677–703). Springer (2012).

  • 43.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371), 80–83. https://doi.org/10.1126/science.aan8048 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Racki, G. A volcanic scenario for the Frasnian-Fammenian major biotic crisis and other Late Devonian global changes: More answers than questions?. Global Planet. Change 189, 103174 (2020).

    Article 

    Google Scholar 

  • 45.

    Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17(1), 56–67 (2011).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Kowalewski, M. Time-averaging, overcompleteness, and the geological record. J. Geol. 104(3), 317–326 (1996).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Hubert, B. L., Zapalski, M., Nicollin, J. P., Mistiaen, B. & Brice, D. Selected benthic faunas from the Devonian of the Ardennes: an estimation of palaeobiodiversity. Acta Geol. Pol. 57(2), 223–262 (2007).

    Google Scholar 

  • 48.

    Zapalski, M. K. Tabulata (anthozoa) from the givetian and frasnian of the southern region of the holy cross Mts. (Poland). Spec. Pap. Palaeontol. 87, 1–100 (2012).

    Google Scholar 

  • 49.

    Nowiński, A. Tabulata and chaetetida from the devonian and carboniferous of southern Poland. Palaeontol. Pol. 35, 1–125 (1976).

    Google Scholar 

  • 50.

    McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Natl. Acad. Sci. 115(12), 3084–3089. https://doi.org/10.1073/pnas.1716643115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 

    Google Scholar 

  • 52.

    Laliberté, E., Legendre, P., & Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12.

  • 53.

    Mouillot, D., Graham, N. A. J., Villeger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbance. Trends Ecol. Evol. 28, 167–177. https://doi.org/10.1016/j.tree.2012.10.004 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin et al. “Package ‘vegan’.” (2020).


  • Source: Ecology - nature.com

    Wildland fire smoke alters the composition, diversity, and potential atmospheric function of microbial life in the aerobiome

    No short-term effect of sinking microplastics on heterotrophy or sediment clearing in the tropical coral Stylophora pistillata