in

Extensive oceanic mesopelagic habitat use of a migratory continental shark species

  • 1.

    Angel, M. V. Biodiversity of the Pelagic Ocean. Conserv. Biol. 7, 760–772 (1993).

    Article 

    Google Scholar 

  • 2.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. https://doi.org/10.1038/ncomms4271 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Hays, G. C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiology 503, 163–170. https://doi.org/10.1023/B:HYDR.0000008476.23617.b0 (2003).

    Article 

    Google Scholar 

  • 4.

    Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. 398, 1–8. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).

    Article 

    Google Scholar 

  • 6.

    Dulvy, N. K. et al. You can swim but you can’t hide: The global status and conservation of oceanic pelagic sharks and rays. Aquat. Conserv. 18, 459–482 (2008).

    Article 

    Google Scholar 

  • 7.

    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571. https://doi.org/10.1038/s41586-020-03173-9 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Compagno, L. J. V. Pelagic elasmobranch diversity. In Sharks of the Open Ocean, 14–23 (2008).

  • 9.

    Howey, L. A. et al. Into the deep: The functionality of mesopelagic excursions by an oceanic apex predator. Ecol. Evol. 6, 5290–5304. https://doi.org/10.1002/ece3.2260 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Francis, M. P. et al. Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (Isurus oxyrinchus). Mar. Biol. 166, 5. https://doi.org/10.1007/s00227-018-3453-5 (2018).

    Article 

    Google Scholar 

  • 11.

    Skomal, G. et al. Horizontal and vertical movement patterns and habitat use of juvenile porbeagles (Lamna nasus) in the western north Atlantic. Front. Mar. Sci. 8, 16 (2021).

    Article 

    Google Scholar 

  • 12.

    Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363. https://doi.org/10.1038/s41598-018-25565-8 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Coelho, R., Fernandez-Carvalho, J. & Santos, M. N. Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. Mar. Environ. Res. 112, 91–99. https://doi.org/10.1016/j.marenvres.2015.10.009 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Arostegui, M. C. et al. Vertical movements of a pelagic thresher shark (Alopias pelagicus): Insights into the species’ physiological limitations and trophic ecology in the Red Sea. Endanger. Species Res. 43, 387–394. https://doi.org/10.3354/esr01079 (2020).

    Article 

    Google Scholar 

  • 15.

    Coffey, D. M., Carlisle, A. B., Hazen, E. L. & Block, B. A. Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. Sci. Rep. 7, 10434. https://doi.org/10.1038/s41598-017-11059-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Coffey, D. M., Royer, M. A., Meyer, C. G. & Holland, K. N. Diel patterns in swimming behavior of a vertically migrating deepwater shark, the bluntnose sixgill (Hexanchus griseus). PLoS One 15, e0228253. https://doi.org/10.1371/journal.pone.0228253 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Francis, M. P., Holdsworth, J. C. & Block, B. A. Life in the open ocean: Seasonal migration and diel diving behaviour of Southern Hemisphere porbeagle sharks (Lamna nasus). Mar. Biol. 162, 2305–2323. https://doi.org/10.1007/s00227-015-2756-z (2015).

    Article 

    Google Scholar 

  • 18.

    Jorgensen, S. J. et al. Eating or meeting? Cluster analysis reveals intricacies of white shark (Carcharodon carcharias) migration and offshore behavior. PLoS One 7, e47819. https://doi.org/10.1371/journal.pone.0047819 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Nelson, D. R. et al. An acoustic tracking of a megamouth shark, Megachasma pelagios: A crepuscular vertical migrator. Environ. Biol. Fish. 49, 389–399. https://doi.org/10.1023/A:1007369619576 (1997).

    Article 

    Google Scholar 

  • 20.

    Sims, D. W., Southall, E. J., Tarling, G. A. & Metcalfe, J. D. Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761. https://doi.org/10.1111/j.1365-2656.2005.00971.x (2005).

    Article 

    Google Scholar 

  • 21.

    Watanabe, Y. Y. & Papastamatiou, Y. P. Distribution, body size and biology of the megamouth shark Megachasma pelagios. J. Fish Biol. 95, 992–998. https://doi.org/10.1111/jfb.14007 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Braun, C. D., Skomal, G. B. & Thorrold, S. R. Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (Cetorhinus maximus) movements in the Western Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00025 (2018).

    Article 

    Google Scholar 

  • 23.

    Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B 277, 679–688. https://doi.org/10.1098/rspb.2009.1155 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Lipscombe, R. S. et al. Habitat use and movement patterns of tiger sharks (Galeocerdo cuvier) in eastern Australian waters. ICES J. Mar. Sci. 77, 3127–3137. https://doi.org/10.1093/icesjms/fsaa212 (2020).

    Article 

    Google Scholar 

  • 25.

    Walker, T. I. et al. Galeorhinus galeus. The IUCN Red List of Threatened Species 2020: e.T39352A2907336. https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T39352A2907336.en (2020). (Downloaded on 18 June 2021).

  • 26.

    Chabot, C. L. Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark Galeorhinus galeus (Triakidae). J. Fish Biol. 87, 371–385. https://doi.org/10.1111/jfb.12727 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS One 12, e0184481. https://doi.org/10.1371/journal.pone.0184481 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Stevens, J. D. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Assoc. UK 70, 707–720. https://doi.org/10.1017/S0025315400058999 (1990).

    Article 

    Google Scholar 

  • 29.

    West, G. J. & Stevens, J. D. Archival tagging of school shark, Galeorhinus galeus, in Australia: Initial results. Environ. Biol. Fish. 60, 283–298 (2001).

    Article 

    Google Scholar 

  • 30.

    Thorburn, J. et al. Ontogenetic variation in movements and depth use, and evidence of partial migration in a Benthopelagic Elasmobranch. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00353 (2019).

    Article 

    Google Scholar 

  • 31.

    McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Partial female migration and cool-water migration pathways in an overfished shark. ICES J. Mar. Sci. 76, 1083–1093. https://doi.org/10.1093/icesjms/fsy181 (2019).

    Article 

    Google Scholar 

  • 32.

    Walker, T. Galeorhinus galeus fisheries of the World, in: Case studies of management of elasmobranch fisheries. FAO Fish. Tech. Pap. 378, 728–773 (1999).

    Google Scholar 

  • 33.

    Brown, L., Bridge, N. & Walker, T. Summary of tag releases and recaptures in the Southern Shark Fishery. Mar. Freshw. Resour. Inst. Rep. 16, 60 (2000).

    Google Scholar 

  • 34.

    Lucifora, L., Menni, R. & Escalante, A. Reproductive biology of the school shark, Galeorhinus galeus, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. Environ. Biol. Fish. 71, 199–209. https://doi.org/10.1007/s10641-004-0305-6 (2004).

    Article 

    Google Scholar 

  • 35.

    Jaureguizar, A. J., Argemi, F., Trobbiani, G., Palma, E. D. & Irigoyen, A. J. Large-scale migration of a school shark, Galeorhinus galeus, in the Southwestern Atlantic. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20170050 (2018).

    Article 

    Google Scholar 

  • 36.

    Nosal, A. P. et al. Triennial migration and philopatry in the critically endangered soupfin shark Galeorhinus galeus. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13848 (2021).

    Article 

    Google Scholar 

  • 37.

    Cuevas, J., Garcia, M. & Di Giacomo, E. Diving behaviour of the critically endangered tope shark Galeorhinus galeus in the Natural Reserve of Bahia San Blas, northern Patagonia. Anim. Biotelemetry 2, 11 (2014).

    Article 

    Google Scholar 

  • 38.

    Iosilevskii, G., Papastamatiou, Y. P., Meyer, C. G. & Holland, K. N. Energetics of the yo-yo dives of predatory sharks. J. Theor. Biol. 294, 172–181. https://doi.org/10.1016/j.jtbi.2011.11.008 (2012).

    ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • 39.

    Carey, F. G., Scharold, J. V. & Kalmijn, A. J. Movements of blue sharks (Prionace glauca) in depth and course. Mar. Biol. 106, 329–342. https://doi.org/10.1007/BF01344309 (1990).

    Article 

    Google Scholar 

  • 40.

    Nakamura, I., Watanabe, Y. Y., Papastamatiou, Y. P., Sato, K. & Meyer, C. G. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar. Ecol. Prog. Ser. 424, 237–246 (2011).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. https://doi.org/10.1038/ncomms5274 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Nat. Acad. Sci. 116, 17187–17192. https://doi.org/10.1073/pnas.1903067116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Andrzejaczek, S., Gleiss, A. C., Pattiaratchi, C. B. & Meekan, M. G. Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. Fish. 29, 335–354. https://doi.org/10.1007/s11160-019-09555-1 (2019).

    Article 

    Google Scholar 

  • 44.

    Papastamatiou, Y. P. et al. Drivers of daily routines in an ectothermic marine predator: Hunt warm, rest warmer?. PLoS One 10, e0127807. https://doi.org/10.1371/journal.pone.0127807 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the global ocean’s mesopelagic zone. Curr. Biol. 27, 113–119. https://doi.org/10.1016/j.cub.2016.11.003 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. I(126), 85–102. https://doi.org/10.1016/j.dsr.2017.05.006 (2017).

    Article 

    Google Scholar 

  • 47.

    Ariza, A. et al. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands. J. Mar. Syst. 157, 82–91. https://doi.org/10.1016/j.jmarsys.2016.01.004 (2016).

    Article 

    Google Scholar 

  • 48.

    Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Peña, M. et al. Acoustic detection of mesopelagic fishes in scattering layers of the Balearic Sea (western Mediterranean). Can. J. Fish. Aquat. Sci. 71, 1186–1197. https://doi.org/10.1139/cjfas-2013-0331 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west Pacific. Deep Sea Res. II(113), 125–144. https://doi.org/10.1016/j.dsr2.2014.10.026 (2015).

    Article 

    Google Scholar 

  • 51.

    Urmy, S. S. & Horne, J. K. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California. Deep Sea Res. I(113), 22–32. https://doi.org/10.1016/j.dsr.2016.04.004 (2016).

    Article 

    Google Scholar 

  • 52.

    Korneliussen, R. J. et al. Acoustic target classification. ICES Coop. Res. Rep. 344, 110. https://doi.org/10.17895/ices.pub.4567 (2018).

    Article 

    Google Scholar 

  • 53.

    D’Elia, M. et al. Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico. Deep Sea Res. I(115), 91–102. https://doi.org/10.1016/j.dsr.2016.05.014 (2016).

    Article 

    Google Scholar 

  • 54.

    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000. https://doi.org/10.1121/1.4906177 (2015).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00364 (2019).

    Article 

    Google Scholar 

  • 56.

    Shea, E. K. & Vecchione, M. Ontogenic changes in diel vertical migration patterns compared with known allometric changes in three mesopelagic squid species suggest an expanded definition of a paralarva. ICES J. Mar. Sci. 67, 1436–1443. https://doi.org/10.1093/icesjms/fsq104 (2010).

    Article 

    Google Scholar 

  • 57.

    Lucifora, L. O., Garcia, V. B., Menni, R. C. & Escalante, A. H. Food habits, selectivity, and foraging modes of the school shark Galeorhinus galeus. Mar. Ecol. Prog. Ser. 315, 259–270 (2006).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Morato, T., Sola, E., Gros, M. P. & Menezes, G. Diets of thornback ray (Raja clavata) and tope shark (Galeorhinus galeus) in the bottom longline fishery of the Azores, northeastern Atlantic. Fish. Bull. 101, 590–602 (2003).

    Google Scholar 

  • 59.

    Ellis, J. R., Pawson, M. G. & Shackley, S. E. The comparative feeding ecology of six species of shark and four species of ray (Elasmobranchii) in the North-East Atlantic. J. Mar. Biol. Assoc. UK. 76, 89–106. https://doi.org/10.1017/S0025315400029039 (1996).

    Article 

    Google Scholar 

  • 60.

    Clarke, M. R., Clarke, D. C., Martins, H. R. & Silva, H. M. The diet of blue shark (Prionace glauca) in Azorean waters, Arquipélago. Life Mar. Sci. 14A, 41–56 (1996).

    Google Scholar 

  • 61.

    Bond, M. E., Tolentino, E., Mangubhai, S. & Howey, L. A. Vertical and horizontal movements of a silvertip shark (Carcharhinus albimarginatus) in the Fijian archipelago. Anim. Biotelemetry 3, 19. https://doi.org/10.1186/s40317-015-0055-6 (2015).

    Article 

    Google Scholar 

  • 62.

    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66, 1–26. https://doi.org/10.1002/lno.11709 (2021).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Arkhipkin, A. I. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems. Deep Sea Res. II(95), 7–20. https://doi.org/10.1016/j.dsr2.2012.07.003 (2013).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2, 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).

    Article 
    PubMed 

    Google Scholar 

  • 65.

    Spaet, J. L. Y., Lam, C. H., Braun, C. D. & Berumen, M. L. Extensive use of mesopelagic waters by a Scalloped hammerhead shark (Sphyrna lewini) in the Red Sea. Anim. Biotelemetry 5, 20. https://doi.org/10.1186/s40317-017-0135-x (2017).

    Article 

    Google Scholar 

  • 66.

    ICES. Working Group on Elasmobranch Fishes (WGEF). ICES Sci. Rep. 2, 789. https://doi.org/10.17895/ices.pub.7470 (2020).

    Article 

    Google Scholar 

  • 67.

    Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B 288, 20201600. https://doi.org/10.1098/rspb.2020.1600 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Pastoors, M. A., van Helmond, E. B., van Marlen, B., van Overzee, H. & de Graaf, E. Pelagic pilot project discard ban, 2013–2014. (IMARES, Wageningen UR, Report Number C071/14) (2014).

  • 69.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).

    ADS 
    Article 

    Google Scholar 

  • 70.

    NOAA National Geophysical Data Center. ETOPO1 1 Arc-Minute Global Relief Model. (NOAA National Centers for Environmental Information, 2009).

  • 71.

    Pedersen, M. W., Patterson, T. A., Thygesen, U. H. & Madsen, H. Estimating animal behaviour and residency from movement data. Oikos 120, 1281–1290. https://doi.org/10.1111/j.1600-0706.2011.19044.x (2011).

    Article 

    Google Scholar 

  • 72.

    Bauer, R. RchivalTag: Analyzing Archival Tagging Data. A set of functions to generate, access and analyze standard data products from archival tagging data. (2020). https://cran.r-project.org/package=RchivalTag.
    Accessed on 8 November 2021.

  • 73.

    Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2 (2008).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S, 4th ed. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2.

  • 75.

    Wood, S. mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL (2012). https://cran.r-project.org/package=mgcv. Accessed on 8 November 2021.

  • 76.

    Wood S. N. Generalized Additive Models. An Introduction with R. 2nd ed. (Chapman & Halll, 2017). https://doi.org/10.1201/9781315370279.


  • Source: Ecology - nature.com

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    3 Questions: What a single car can say about traffic