Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).
Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
Google Scholar
Erwin, D. H. Novelty and innovation in the history of life. Curr. Biol. 25, 930–940 (2015).
Novack-Gottshall, P. M. General models of ecological diversification. I. Conceptual synthesis. Paleobiology 42, 185–208 (2016).
Marshall, C. R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006).
Google Scholar
Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).
Google Scholar
Hopkins, M. J. & Smith, A. B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl Acad. Sci. USA 112, 3758–3763 (2015).
Google Scholar
Wright, D. F. Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Sci. Rep. 7, 13745 (2017).
Google Scholar
Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).
Google Scholar
Crouch, N. M. A. & Ricklefs, R. E. Speciation rate is independent of the rate of evolution of morphological size, shape, and absolute morphological specialization in a large clade of birds. Am. Naturalist 193, E78–E91 (2019).
Slater, G. J. & Friscia, A. R. Hierarchy in adaptive radiation: a case study using the Carnivora (Mammalia). Evolution 73, 524–539 (2019).
Google Scholar
Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature https://doi.org/10.1038/s41586-020-2930-4 (2020).
Cole, S. R. & Hopkins, M. J. Selectivity and the effect of mass extinctions on disparity and functional ecology. Sci. Adv. https://doi.org/10.1126/sciadv.abf4072 (2021).
Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).
Google Scholar
Smith, A. B., Zamora, S. & Álvaro, J. J. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat. Commun. 4, 1385 (2013).
Google Scholar
Deline, B. et al. Evolution and development at the origin of a phylum. Curr. Biol. 30, 1672–1679 (2020).
Google Scholar
Pisani, D., Feuda, R., Peterson, K. J. & Smith, A. B. Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol. Phylogenet. Evol. 62, 27–34 (2012).
Google Scholar
Smith, A. B. & Zamora, S. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc. R. Soc. B 280, 20131197 (2013).
Google Scholar
Zamora, S. et al. in Early Palaeozoic Biogeography and Palaeogeography. Memoirs 38 (eds Harper, D. A. T. & Servais, T.) 157–171 (Geological Society, London, 2013).
Lefebvre, B. et al. in Early Palaeozoic Biogeography and Palaeogeography. Memoirs 38 (eds Harper, D. A. T. & Servais, T.) 173–198 (Geological Society, London, 2013).
Novack-Gottshall, P. M. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33, 273–294 (2007).
Wagner, P. J. On the probabilities of branch durations and stratigraphic gaps in phylogenies of fossil taxa when rates of diversification and sampling vary over time. Paleobiology 45, 30–55 (2019).
Sumrall, C. D. & Wray, G. A. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33, 149–163 (2007).
Guensburg, T. E. & Sprinkle, J. in The Ecology of the Cambrian Radiation (eds Zhuravlev, A. I. U. & Riding, R.) 428–444 (Columbia Univ. Press, 2001).
Zamora, S., Deline, B., Álvaro, J. J. & Rahman, I. A. The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. Earth Sci. Rev. 171, 478–491 (2017).
Lloyd, G. T., Guillerme, T., Sherratt, E. & Wang, S. C. Claddis: measuring morphological diversity and evolutionary tempo. R package version 0.4.0 https://cran.r-project.org/package=Claddis (2020).
Lloyd, G. T., Wang, S. C. & Brusatte, S. L. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330–348 (2012).
Google Scholar
Wagner, P. J. Early bursts of disparity and the reorganization of character integration. Proc. R. Soc. B 285, 20181604 (2018).
Google Scholar
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
Google Scholar
Lloyd, G. T. Estimating morphological diversity and tempo with discrete character–taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).
Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).
Knope, M. L., Heim, N. A., Frishkoff, L. O. & Payne, J. L. Limited role of functional differentiation in early diversification of animals. Nat. Commun. 6, 6455–6461 (2015).
Google Scholar
Cole, S. R., Wright, D. F. & Ausich, W. I. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeogr. Palaeoclimatol. Palaeoecol. 521, 82–98 (2019).
Revell, L. J. phytools: phylogenetic tools for comparative biology (and other things). R package version 0.7-47 https://cran.r-project.org/package=phytools (2020).
Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).
Google Scholar
Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).
Lloyd, G. T. Journeys through discrete-character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology 61, 637–645 (2018).
Anderson, P. S. L. & Friedman, M. Using cladistic characters to predict functional variety: experiments using early gnathostomes. J. Vertebr. Paleontol. 32, 1254–1270 (2012).
Deline, B. et al. Evolution of metazoan morphological disparity. Proc. Natl Acad. Sci. USA 15, E8909–E8918 (2018).
Matzke, N. J. & Irmis, R. B. Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data. PeerJ 6, e4553 (2018).
Google Scholar
Laing, A. M. et al. Giant taxon–character matrices: the future of morphological systematics. Cladistics 34, 333–335 (2018).
Google Scholar
Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine Metazoa. Annu. Rev. Earth Planet. Sci. 39, 241–269 (2011).
Google Scholar
Knope, M. L., Bush, A. M., Frishkoff, L. O., Heim, N. A. & Payne, J. L. Ecologically diverse clades dominate the oceans via extinction resistance. Science 367, 1035–1038 (2020).
Google Scholar
Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing v.4.0.2 (R Foundation for Statistical Computing, 2020).
Zamora, S. & Rahman, I. A. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57, 1105–1119 (2014).
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 36, 199–204 (2013).
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D. & Mitchell, C. E. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proc. Natl Acad. Sci. USA 109, 3428–3433 (2012).
Google Scholar
Bapst, D. W. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).
Bapst, D. W. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40, 331–351 (2014).
Bapst, D. W. & Hopkins, M. J. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43, 49–67 (2016).
Paradis, E. et al. ape: analyses of phylogenetics and evolution. R package version 5.4 https://cran.r-project.org/package=ape (2020).
Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).
Google Scholar
Guillerme, T. et al. Disparities in the analysis of morphological disparity. Biol. Lett. 16, 20200199 (2020).
Google Scholar
Brusatte, S. L., Montanari, S., Yi, H.-Y. & Norell, M. A. Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology 37, 1–22 (2011).
Guillerme, T. & Cooper, N. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology 61, 481–493 (2018).
Wills, M. A. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biol. J. Linn. Soc. 65, 455–500 (1998).
Lehmann, O. E. R., Ezcurra, M. D., Butler, R. J. & Lloyd, G. T. Biases with the Generalized Euclidean Distance measure in disparity analyses with high levels of missing data. Palaeontology 62, 837–849 (2019).
Hopkins, M. J. & John, K. S. A new family of dissimilarity metrics for discrete character matrices that include inapplicable characters and its importance for disparity studies. Proc. R. Soc. B 285, 20181784 (2018).
Google Scholar
Chessel, D., Dufour, A. B. & Thioulouse, J. ade4: analysis of ecological data–exploratory and Euclidean methods in environmental sciences. R package version 1.7-15 https://cran.r-project.org/package=ade4 (2020).
Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).
Novack-Gottshall, P. M. General models of ecological diversification. II. Simulations and empirical applications. Paleobiology 42, 209–239 (2016).
Villéger, S., Novack-Gottshall, P. M. & Mouillot, D. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol. Lett. 14, 561–568 (2011).
Google Scholar
Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. https://doi.org/10.1111/ele.13778 (2021).
Wills, M. A. in Fossils, Phylogeny, and Form: An Analytical Approach (eds Adrain, J. M. et al.) 55–143 (Kluwer Academic/Plenum, 2001).
Foote, M. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19, 185–204 (1993).
Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695–715 (2001).
Hopkins, M. J. & Gerber, S. in Evolutionary Developmental Biology: A Reference Guide (eds de la Rosa, L. N. & Müller, G.) 1–12 (Springer, 2017).
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
Google Scholar
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
Google Scholar
Novack-Gottshall, P. ecospace: simulating community assembly and ecological diversification using ecospace frameworks. R package version 1.0.1 https://cran.r-project.org/package=ecospace (2015).
Laliberté, E. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 https://cran.r-project.org/package=FD (2014).
Dineen, A. A., Roopnarine, P. D. & Fraiser, M. L. Ecological continuity and transformation after the Permo-Triassic mass extinction in northeastern Panthalassa. Biol. Lett. 15, 20180902 (2019).
Google Scholar
Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).
Kowalewski, M. & Novack-Gottshall, P. in Quantitative Methods in Paleobiology. Short Courses in Paleontology 16 (eds Alroy, J. & Hunt, G.) 19–54 (Paleontological Society and Paleontological Research Institute, 2010).
Lingoes, J. C. Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika 36, 195–203 (1971).
Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).
Source: Ecology - nature.com