in

Morphological volatility precedes ecological innovation in early echinoderms

  • Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).

  • Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erwin, D. H. Novelty and innovation in the history of life. Curr. Biol. 25, 930–940 (2015).

    Google Scholar 

  • Novack-Gottshall, P. M. General models of ecological diversification. I. Conceptual synthesis. Paleobiology 42, 185–208 (2016).

    Google Scholar 

  • Marshall, C. R. Explaining the Cambrian “explosion” of animals. Annu. Rev. Earth Planet. Sci. 34, 355–384 (2006).

    CAS 

    Google Scholar 

  • Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopkins, M. J. & Smith, A. B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc. Natl Acad. Sci. USA 112, 3758–3763 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, D. F. Phenotypic innovation and adaptive constraints in the evolutionary radiation of Palaeozoic crinoids. Sci. Rep. 7, 13745 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crouch, N. M. A. & Ricklefs, R. E. Speciation rate is independent of the rate of evolution of morphological size, shape, and absolute morphological specialization in a large clade of birds. Am. Naturalist 193, E78–E91 (2019).

    Google Scholar 

  • Slater, G. J. & Friscia, A. R. Hierarchy in adaptive radiation: a case study using the Carnivora (Mammalia). Evolution 73, 524–539 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature https://doi.org/10.1038/s41586-020-2930-4 (2020).

  • Cole, S. R. & Hopkins, M. J. Selectivity and the effect of mass extinctions on disparity and functional ecology. Sci. Adv. https://doi.org/10.1126/sciadv.abf4072 (2021).

  • Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. B., Zamora, S. & Álvaro, J. J. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat. Commun. 4, 1385 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deline, B. et al. Evolution and development at the origin of a phylum. Curr. Biol. 30, 1672–1679 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pisani, D., Feuda, R., Peterson, K. J. & Smith, A. B. Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol. Phylogenet. Evol. 62, 27–34 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. B. & Zamora, S. Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc. R. Soc. B 280, 20131197 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zamora, S. et al. in Early Palaeozoic Biogeography and Palaeogeography. Memoirs 38 (eds Harper, D. A. T. & Servais, T.) 157–171 (Geological Society, London, 2013).

  • Lefebvre, B. et al. in Early Palaeozoic Biogeography and Palaeogeography. Memoirs 38 (eds Harper, D. A. T. & Servais, T.) 173–198 (Geological Society, London, 2013).

  • Novack-Gottshall, P. M. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33, 273–294 (2007).

    Google Scholar 

  • Wagner, P. J. On the probabilities of branch durations and stratigraphic gaps in phylogenies of fossil taxa when rates of diversification and sampling vary over time. Paleobiology 45, 30–55 (2019).

    Google Scholar 

  • Sumrall, C. D. & Wray, G. A. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33, 149–163 (2007).

    Google Scholar 

  • Guensburg, T. E. & Sprinkle, J. in The Ecology of the Cambrian Radiation (eds Zhuravlev, A. I. U. & Riding, R.) 428–444 (Columbia Univ. Press, 2001).

  • Zamora, S., Deline, B., Álvaro, J. J. & Rahman, I. A. The Cambrian Substrate Revolution and the early evolution of attachment in suspension-feeding echinoderms. Earth Sci. Rev. 171, 478–491 (2017).

    Google Scholar 

  • Lloyd, G. T., Guillerme, T., Sherratt, E. & Wang, S. C. Claddis: measuring morphological diversity and evolutionary tempo. R package version 0.4.0 https://cran.r-project.org/package=Claddis (2020).

  • Lloyd, G. T., Wang, S. C. & Brusatte, S. L. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330–348 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, P. J. Early bursts of disparity and the reorganization of character integration. Proc. R. Soc. B 285, 20181604 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, G. T. Estimating morphological diversity and tempo with discrete character–taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Google Scholar 

  • Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    Google Scholar 

  • Knope, M. L., Heim, N. A., Frishkoff, L. O. & Payne, J. L. Limited role of functional differentiation in early diversification of animals. Nat. Commun. 6, 6455–6461 (2015).

    CAS 

    Google Scholar 

  • Cole, S. R., Wright, D. F. & Ausich, W. I. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeogr. Palaeoclimatol. Palaeoecol. 521, 82–98 (2019).

    Google Scholar 

  • Revell, L. J. phytools: phylogenetic tools for comparative biology (and other things). R package version 0.7-47 https://cran.r-project.org/package=phytools (2020).

  • Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).

    Google Scholar 

  • Lloyd, G. T. Journeys through discrete-character morphospace: synthesizing phylogeny, tempo, and disparity. Palaeontology 61, 637–645 (2018).

    Google Scholar 

  • Anderson, P. S. L. & Friedman, M. Using cladistic characters to predict functional variety: experiments using early gnathostomes. J. Vertebr. Paleontol. 32, 1254–1270 (2012).

    Google Scholar 

  • Deline, B. et al. Evolution of metazoan morphological disparity. Proc. Natl Acad. Sci. USA 15, E8909–E8918 (2018).

    Google Scholar 

  • Matzke, N. J. & Irmis, R. B. Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data. PeerJ 6, e4553 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laing, A. M. et al. Giant taxon–character matrices: the future of morphological systematics. Cladistics 34, 333–335 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine Metazoa. Annu. Rev. Earth Planet. Sci. 39, 241–269 (2011).

    CAS 

    Google Scholar 

  • Knope, M. L., Bush, A. M., Frishkoff, L. O., Heim, N. A. & Payne, J. L. Ecologically diverse clades dominate the oceans via extinction resistance. Science 367, 1035–1038 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing v.4.0.2 (R Foundation for Statistical Computing, 2020).

  • Zamora, S. & Rahman, I. A. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57, 1105–1119 (2014).

    Google Scholar 

  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 36, 199–204 (2013).

    Google Scholar 

  • Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D. & Mitchell, C. E. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proc. Natl Acad. Sci. USA 109, 3428–3433 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bapst, D. W. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods Ecol. Evol. 4, 724–733 (2013).

    Google Scholar 

  • Bapst, D. W. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40, 331–351 (2014).

    Google Scholar 

  • Bapst, D. W. & Hopkins, M. J. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43, 49–67 (2016).

    Google Scholar 

  • Paradis, E. et al. ape: analyses of phylogenetics and evolution. R package version 5.4 https://cran.r-project.org/package=ape (2020).

  • Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillerme, T. et al. Disparities in the analysis of morphological disparity. Biol. Lett. 16, 20200199 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brusatte, S. L., Montanari, S., Yi, H.-Y. & Norell, M. A. Phylogenetic corrections for morphological disparity analysis: new methodology and case studies. Paleobiology 37, 1–22 (2011).

    Google Scholar 

  • Guillerme, T. & Cooper, N. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology 61, 481–493 (2018).

    Google Scholar 

  • Wills, M. A. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biol. J. Linn. Soc. 65, 455–500 (1998).

    Google Scholar 

  • Lehmann, O. E. R., Ezcurra, M. D., Butler, R. J. & Lloyd, G. T. Biases with the Generalized Euclidean Distance measure in disparity analyses with high levels of missing data. Palaeontology 62, 837–849 (2019).

    Google Scholar 

  • Hopkins, M. J. & John, K. S. A new family of dissimilarity metrics for discrete character matrices that include inapplicable characters and its importance for disparity studies. Proc. R. Soc. B 285, 20181784 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chessel, D., Dufour, A. B. & Thioulouse, J. ade4: analysis of ecological data–exploratory and Euclidean methods in environmental sciences. R package version 1.7-15 https://cran.r-project.org/package=ade4 (2020).

  • Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).

    Google Scholar 

  • Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Google Scholar 

  • Novack-Gottshall, P. M. General models of ecological diversification. II. Simulations and empirical applications. Paleobiology 42, 209–239 (2016).

  • Villéger, S., Novack-Gottshall, P. M. & Mouillot, D. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecol. Lett. 14, 561–568 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. https://doi.org/10.1111/ele.13778 (2021).

  • Wills, M. A. in Fossils, Phylogeny, and Form: An Analytical Approach (eds Adrain, J. M. et al.) 55–143 (Kluwer Academic/Plenum, 2001).

  • Foote, M. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19, 185–204 (1993).

    Google Scholar 

  • Ciampaglio, C. N., Kemp, M. & McShea, D. W. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27, 695–715 (2001).

    Google Scholar 

  • Hopkins, M. J. & Gerber, S. in Evolutionary Developmental Biology: A Reference Guide (eds de la Rosa, L. N. & Müller, G.) 1–12 (Springer, 2017).

  • Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Novack-Gottshall, P. ecospace: simulating community assembly and ecological diversification using ecospace frameworks. R package version 1.0.1 https://cran.r-project.org/package=ecospace (2015).

  • Laliberté, E. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 https://cran.r-project.org/package=FD (2014).

  • Dineen, A. A., Roopnarine, P. D. & Fraiser, M. L. Ecological continuity and transformation after the Permo-Triassic mass extinction in northeastern Panthalassa. Biol. Lett. 15, 20180902 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).

    Google Scholar 

  • Kowalewski, M. & Novack-Gottshall, P. in Quantitative Methods in Paleobiology. Short Courses in Paleontology 16 (eds Alroy, J. & Hunt, G.) 19–54 (Paleontological Society and Paleontological Research Institute, 2010).

  • Lingoes, J. C. Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika 36, 195–203 (1971).

    Google Scholar 

  • Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).


  • Source: Ecology - nature.com

    RNA test detects deadly pregnancy disorder early

    Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera)