Caldwell, M. W. “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Can. J. Earth Sci. 40, 573–588 (2003).
Bejder, L. & Hall, B. K. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 4, 445–458 (2002).
Google Scholar
Gans, C. Locomotion and burrowing in limbless vertebrates. Nature 242, 414–415 (1973).
Gans, C. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15, 455–467 (1975).
Camaiti, M., Evans, A. R., Hipsley, C. A. & Chapple, D. G. A farewell to arms and legs: a review of limb reduction in squamates. Biol. Rev. 96, 1035–1050 (2021).
Google Scholar
Brandley, M. C., Huelsenbeck, J. P. & Wiens, J. J. Rates and patterns in the evolution of snake‐like body form in squamate reptiles: evidence for repeated re‐evolution of lost digits and long‐term persistence of intermediate body forms. Evol. Int. J. Org. Evol. 62, 2042–2064 (2008).
Skinner, A., Lee, M. S. & Hutchinson, M. N. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol. Biol. 8, 310 (2008).
Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).
Google Scholar
Woltering, J. M. et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev. Biol. 332, 82–89 (2009).
Google Scholar
Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).
Google Scholar
Jaekel, O. Über die klassen der tetrapoden [About the classes of the tetrapods]. Zool. Anz. 34, 193–212 (1909).
Anderson J. S. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 182–227 (Indiana Univ. Press, 2007).
Cope, E. D. Synopsis of the extinct Batrachia from the Coal Measures. Ohio Geol. Surv. 2, 349–411 (1875).
Farrell, Ú. Pyritization of soft tissues in the fossil record: an overview. Paleontol. Soc. Pap. 20, 35–58 (2014).
Mann, A. Cranial ornamentation of a large Brachydectes newberryi (Recumbirostra: Lysorophia) from Linton, Ohio. Vertebr. Anat. Morphol. Palaeontol. 6, 91–96 (2018).
Mann, A., Pardo, J. D. & Maddin, H. C. Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophian origins. Zool. J. Linn. Soc. 187, 506–517 (2019).
Maisano, J. A. A survey of state of ossification in neonatal squamates. Herpetol. Monogr. 15, 135–157 (2001).
Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
Pardo, J. D. & Anderson, J. S. Cranial morphology of the Carboniferous–Permian tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): new data from µCT. PLoS ONE 11, e0161823 (2016).
Google Scholar
Milner, A. R. Small temnospondyl amphibians from the Middle Pennsylvanian of Illinois. Paleontology 25, 635–664 (1982).
Godfrey, S. A diminutive temnospondyl amphibian from the Pennsylvanian of Illinois. Can. J. Earth Sci. 40, 507–514 (2003).
Mann, A. & Maddin, H. C. Diabloroter bolti, a short-bodied recumbirostran ‘microsaur’ from the Francis Creek Shale, Mazon Creek, Illinois. Zool. J. Linn. Soc. 187, 494–505 (2019).
Mann, A., McDaniel, E. J., McColville, E. R. & Maddin, H. C. Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles. R. Soc. Open Sci. 6, 191191 (2019).
Google Scholar
Mann, A. & Gee, B. M. Lissamphibian-like toepads in an exceptionally preserved amphibamiform from Mazon Creek. J. Vertebr. Paleontol. 39, e1727490 (2020).
Wellstead, C. F. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bull. Am. Mus. Nat. Hist. 209, 1–90 (1991).
Sallan, L. C. & Coates, M. I. The long-rostrumed elasmobranch Bandringa Zangerl, 1969, and taphonomy within a Carboniferous shark nursery. J. Vertebr. Paleontol. 34, 22–33 (2014).
Allison, P. A. & Briggs, D. E. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).
Briggs, D. E. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).
Google Scholar
Rieppel, O. Studies on skeleton formation in reptiles. V. Patterns of ossification in the skeleton of Alligator mississippiensis Daudin (Reptilia, Crocodylia). Zool. J. Linn. Soc. 109, 301–325 (1993).
Sheil, C. A. Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydridae). J. Morphol. 263, 71–106 (2005).
Google Scholar
Roscito, J. G. & Rodrigues, M. T. Skeletal development in the fossorial gymnophthalmids Calyptommatus sinebrachiatus and Nothobachia ablephara. Zoology 115, 289–301 (2012).
Google Scholar
Boisvert, C. A. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. J. Exp. Zool. B 312, 1–29 (2009).
Klembara, J. & Janiga, M. Variation in Discosauriscus austriacus (Makowsky, 1876) from the Lower Permian of the Boskovice Furrow (Czech Republic). Zool. J. Linn. Soc. 108, 247–270 (1993).
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).
Google Scholar
Mann, A., Calthorpe, A. S. & Maddin, H. C. Joermungandr bolti, an exceptionally preserved ‘microsaur’ from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra. R. Soc. Open Sci. 8, 210319 (2021).
Google Scholar
Swofford, D. Phylogenetic analysis using parsimony (PAUP) v.4.0b10 (Sinauer Associates, 2002).
Cohn, M. J. & Bright, P. E. Molecular control of vertebrate limb development, evolution and congenital malformations. Cell Tissue Res. 296, 3–17 (1999).
Google Scholar
Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).
Google Scholar
Marchini, M. & Rolian, C. Artificial selection sheds light on developmental mechanisms of limb elongation. Evolution 72, 825–837 (2018).
Google Scholar
Rolian, C. Endochondral ossification and the evolution of limb proportions. WIREs Dev. Biol. 9, e373 (2020).
Weir, E. C. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl Acad. Sci. USA 93, 10240–10245 (1996).
Google Scholar
Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).
Google Scholar
Marchini, M., Hernandez, E. S. & Rolian, C. Morphology and development of a novel murine skeletal dysplasia. PeerJ 7, e7180 (2019).
Google Scholar
Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. B 297, 48–56 (2003).
Leal, F. & Cohn, M. J. Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers. Curr. Biol. 26, 2966–2973 (2016).
Google Scholar
Leal, F. & Cohn, M. J. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 56, e23077 (2018).
Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32, 73–92 (1978).
Google Scholar
Anderson, J. S. Revision of the aïstopod genus Phlegethontia (Tetrapoda: Lepospondyli). J. Paleontol. 76, 1029–1046 (2002).
Anderson, J. S. A new aïstopod (Tetrapoda: Lepospondyli) from Mazon Creek, Illinois. J. Vertebr. Paleontol. 23, 79–88 (2003).
Shapiro, M. D. Developmental morphology of limb reduction in Hemiergis (Squamata: Scincidae): chondrogenesis, osteogenesis, and heterochrony. J. Morphol. 254, 211–231 (2002).
Google Scholar
Herbst, E. C. & Hutchinson, J. R. New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 157–175 (2019).
Google Scholar
Carroll, R. L. & Gaskill, P. The order Microsauria. Mem. Am. Philos. Soc. 126, 1–211 (1978).
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J. & Jacobs, L. L. A fossil snake with limbs. Science 287, 2010–2012 (2000).
Google Scholar
Zaher, H., Apesteguia, S. & Scanferla, C. A. The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool. J. Linn. Soc. 156, 801–826 (2009).
Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).
Camp, C. L. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48, 289–480 (1923).
Essex, R. Studies in reptilian degeneration. Proc. Zool. Soc. Lond. 97, 879–945 (1927).
Sewertzoff, A. N. Studien über die reduktion der organe der wirbeltiere. Zool. Jahrb. Abt. Anat. Ontog. Tiere 53, 611–699 (1931).
Source: Ecology - nature.com