in

Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0412-1 (2019).

    Article 

    Google Scholar 

  • Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, eabj3593 (2021).

    CAS 
    Article 

    Google Scholar 

  • Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364. https://doi.org/10.1038/s41586-018-0383-9 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Oliver, et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00734 (2019).

    Article 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 
    Article 

    Google Scholar 

  • Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).

    ADS 
    Article 

    Google Scholar 

  • Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).

    ADS 
    Article 

    Google Scholar 

  • Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0096-y (2018).

    Article 

    Google Scholar 

  • Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).

    Article 

    Google Scholar 

  • Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121. https://doi.org/10.1371/journal.pone.0185121 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. https://doi.org/10.1038/ncomms16101 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montie, S., Thomsen, M. S., Rack, W. & Broady, P. A. Extreme summer marine heatwaves increase chlorophyll a in the Southern Ocean. Antarct. Sci. 32, 508–509 (2020).

    ADS 
    Article 

    Google Scholar 

  • Gupta, A. S. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 1–15 (2020).

    ADS 
    Article 

    Google Scholar 

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1. https://doi.org/10.1007/s10584-021-03094-0 (2021).

    ADS 
    Article 

    Google Scholar 

  • Thomsen, et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00084 (2019).

    Article 

    Google Scholar 

  • Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26, 3525–3538. https://doi.org/10.1111/gcb.15065 (2020).

    ADS 
    Article 

    Google Scholar 

  • Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723-2730.e2724. https://doi.org/10.1016/j.cub.2019.06.077 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thomsen, M. S. & McGlathery, K. Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar. Coast. Shelf Sci. 62, 63–73. https://doi.org/10.1016/j.ecss.2004.08.007 (2005).

    ADS 
    Article 

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article 

    Google Scholar 

  • Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527. https://doi.org/10.1016/j.cub.2017.04.060 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tait, L. W., Thoral, F., Pinkerton, M. H., Thomsen, M. S. & Schiel, D. R. Loss of giant kelp, Macrocystis pyrifera, driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721087 (2021).

    Article 

    Google Scholar 

  • Marin, M., Feng, M., Phillips, H. E. & Bindoff, N. L. A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends. J. Geophys. Res. Oceans 126, e2020JC016708. https://doi.org/10.1029/2020JC016708 (2021).

    ADS 
    Article 

    Google Scholar 

  • Kain, J. M. The seasons in the subtidal. Brit. Phycol. J. 24, 203–215 (1989).

    Article 

    Google Scholar 

  • Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600. https://doi.org/10.1111/jpy.13051 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).

    ADS 
    Article 

    Google Scholar 

  • Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11, 1–9 (2020).

    Article 

    Google Scholar 

  • Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).

    ADS 
    Article 

    Google Scholar 

  • Cayan, D. R. Large-scale relationships between sea surface temperature and surface air temperature. Mon. Weather Rev. 108, 1293–1301 (1980).

    ADS 
    Article 

    Google Scholar 

  • Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).

    Google Scholar 

  • trend: non-parametric trend tests and changepoint detection.–R package ver. 1.1. 2 (2020).

  • Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x (2006).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Thomsen, M. S. & South, P. M. Communities and attachment networks associated with primary, secondary and alternative foundation species; a case study of stressed and disturbed stands of southern bull kelp. Diversity 11, 56. https://doi.org/10.3390/d11040056 (2019).

    Article 

    Google Scholar 

  • Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).

    Article 

    Google Scholar 

  • Thomsen, M. S. et al. Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Divers. Distrib. (2021).

  • Rogers-Bennett, L. & Catton, C. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 1–11 (2020).

    Article 

    Google Scholar 

  • Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474. https://doi.org/10.1111/gcb.12694 (2015).

    ADS 
    Article 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30. https://doi.org/10.3354/meps12080 (2017).

    ADS 
    Article 

    Google Scholar 

  • Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography (Washington D.C.) https://doi.org/10.5670/oceanog.2016.32 (2016).

    Article 

    Google Scholar 

  • Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726. https://doi.org/10.1038/s41598-020-69665-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collette, B. B. in Reproduction and sexuality in marine fishes 21–64 (University of California Press, 2010).

  • Yatsu, A. & Shimada, H. Distributions of Epipelagic Fishes, Squids, Marine Mammals. Bulletin 53 North Pacific Commission, 111–146.

  • Hirst, A., Roff, J. & Lampitt, R. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Adv. Mar. Biol. 44, 1–142 (2003).

    CAS 
    Article 

    Google Scholar 

  • Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).

    ADS 
    Article 

    Google Scholar 

  • Bernardello, R., Serrano, E., Coma, R., Ribes, M. & Bahamon, N. A comparison of remote-sensing SST and in situ seawater temperature in near-shore habitats in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 559, 21–34 (2016).

    ADS 
    Article 

    Google Scholar 

  • Brewin, R. J. et al. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10, 925 (2018).

    ADS 
    Article 

    Google Scholar 

  • Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944. https://doi.org/10.1371/journal.pone.0081944 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marin, M., Bindoff, N. L., Feng, M. & Phillips, H. E. Slower long-term coastal warming drives dampened trends in coastal marine heatwave exposure. J. Geophys. Res. Oceans https://doi.org/10.1029/2021jc017930 (2021).

    Article 

    Google Scholar 

  • Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).

    Article 

    Google Scholar 

  • Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531. https://doi.org/10.1007/s00531-003-0328-9 (2003).

    Article 

    Google Scholar 

  • El Glynn, P. W. Nino-southern oscillation 1982–1983: Nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Syst. 19, 309–346. https://doi.org/10.1146/annurev.es.19.110188.001521 (1988).

    Article 

    Google Scholar 

  • Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191. https://doi.org/10.1007/bf00265009 (1990).

    ADS 
    Article 

    Google Scholar 

  • Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in panama and ecuador during the 1997–1998 El Niño-Southern Oscillation Event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).

    Google Scholar 

  • Podestá, G. P. & Glynn, P. W. The 1997–98 El Niño event in Panama and Galápagos: An update of thermal stress indices relative to coral bleaching. Bull. Mar. Sci. 69, 43–59 (2001).

    Google Scholar 

  • Ladah, L. B. & Zertuche-Gonzalez, J. A. Giant kelp (Macrocystis pyrifera) survival in deep water (25–40 m) during El Nino of 1997–1998 in Baja California, Mexico. Bot. Marina 47, 367–372. https://doi.org/10.1515/bot.2004.054 (2004).

    Article 

    Google Scholar 

  • Kayanne, H. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs 36, 63–70 (2017).

    ADS 
    Article 

    Google Scholar 

  • Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).

    ADS 
    Article 

    Google Scholar 

  • Marba, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).

    ADS 
    Article 

    Google Scholar 

  • Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280. https://doi.org/10.1038/ncomms10280 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388. https://doi.org/10.1038/s41598-020-70273-x (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snover, M. L. Ontogenetic habitat shifts in marine organisms: Influencing factors and the impact of climate variability. Bull. Mar. Sci. 83, 53–67 (2008).

    Google Scholar 

  • Harley, C. D. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kelaher, B. P., Coleman, M. A. & Bishop, M. J. Ocean warming, but not acidification, accelerates seagrass decomposition under near-future climate scenarios. Mar. Ecol. Prog. Ser. 605, 103–110 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • De Senerpont Domis, L. N. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 58, 463–482 (2013).

    Article 

    Google Scholar 

  • Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).

    ADS 
    Article 

    Google Scholar 

  • Morales-Nin, B. & Panfili, J. Seasonality in the deep sea and tropics revisited: What can otoliths tell us?. Mar. Freshw. Res. 56, 585–598 (2005).

    Article 

    Google Scholar 

  • Alongi, D. M. Ecology of tropical soft-bottom benthos: A review with emphasis on emerging concepts. Rev. Biol. Trop. 37, 85–100 (1989).

    Google Scholar 

  • Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56. https://doi.org/10.1111/fog.12083 (2016).

    Article 

    Google Scholar 

  • Spillman, C. M., Smith, G. A., Hobday, A. J. & Hartog, J. R. Onset and decline rates of marine heatwaves: Global trends, seasonal forecasts and marine management. Front. Clim. https://doi.org/10.3389/fclim.2021.801217 (2021).

    Article 

    Google Scholar 

  • Schlegel, R. W., Oliver, E. C. J., Wernberg, T. & Smit, A. J. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151, 189–205. https://doi.org/10.1016/j.pocean.2017.01.004 (2017).

    ADS 
    Article 

    Google Scholar 

  • Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939. https://doi.org/10.1175/jcli-d-20-0166.1 (2021).

    ADS 
    Article 

    Google Scholar 

  • OBPG, N. & Stumpf, R. P. Distance to Nearest Coastline: 0.01-Degree Grid. Distributed by the Pacific Islands Ocean Observing System (PacIOOS). http://pacioos.org/metadata/dist2coast_1deg.html and https://data.noaa.gov/dataset/dataset/distance-to-nearest-coastline-0-01-degree-grid2http://www.pacioos.hawaii.edu/metadata/dist2coast_1deg.html (2012).

  • Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3(27), 821 (2018).

    ADS 
    Article 

    Google Scholar 

  • Sakurai, T., Yukio, K. & Kuragano, T. in Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. 2606–2608 (IEEE).


  • Source: Ecology - nature.com

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    Stop ignoring map uncertainty in biodiversity science and conservation policy