in

Assessing Asiatic cheetah’s individual diet using metabarcoding and its implication for conservation

  • Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2014).

    ADS 
    Article 

    Google Scholar 

  • Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jowkar, H. et al. Acinonyx jubatus ssp. venaticus. The IUCN Red List of Threatened Species 2008: e.T220A13035342. (2008).

  • Khalatbari, L., Yusefi, G. H., Martínez-Freiría, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic Cheetah. Hystrix 29, 145–151 (2018).

    Google Scholar 

  • Asadi, H. The Environmental Limitations and Future of the Asiatic Cheetah in Iran. (1997).

  • CACP. Annual Report. (2014).

  • Khalatbari, L., Jowkar, H., Yusefi, G. H., Brito, J. C. & Ostrowski, S. The current status of Asiatic cheetah in Iran. Cat News 66, 10–13 (2017).

    Google Scholar 

  • Marker, L. L. et al. Ecology of free-ranging cheetahs. in Cheetahs: Biology and Conservation (eds. Marker, L. L., Boast, L. K. & Schmidt-Kuntzel, A.) 107–119 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-12-804088-1.00008-3

  • Hayward, M. W., Hofmeyr, M., O’Brian, J. & Kerley, G. I. H. Prey preferences of the cheetah (Acinonyx jubatus) (Felidae: Carnivora): morphological limitations or the need to capture rapidly consumable prey before kleptoparasites arrive?. J. Zool. 270, 615–627 (2006).

    Article 

    Google Scholar 

  • Mills, M. G. L., Broomhall, L. S. & Toit, J. T. Cheetah Acinonyx jubatus feeding ecology in the Kruger National Park and a comparison across African savanna habitats: is the cheetah only a successful hunter on open grassland plains?. Wildlife Biol. 10, 177–186 (2004).

    Article 

    Google Scholar 

  • Wachter, B., Jauernig, O. & Breitenmoser, U. Determination of prey hair in faeces of free-ranging Namibian cheetahs with a simple method. Cat News 44, 8–9 (2006).

    Google Scholar 

  • Marker, L. L., Muntifering, J. R., Dickman, A. J., Mills, M. G. L. & Macdonald, D. W. Quantifying prey preferences of free-ranging Namibian cheetahs. South Afr. J. Wildl. Res. 33, 43–53 (2003).

    Google Scholar 

  • Wacher, T. et al. Sahelo-Saharan Interest Group Wildlife Surveys, Part 4: Ahaggar Mountains, Algeria (March 2005). (2005).

  • Thuo, D. et al. An insight into the prey spectra and livestock predation by cheetahs in Kenya using faecal DNA metabarcoding. Zoology 143, 125853 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Broekhuis, F., Thuo, D. & Hayward, M. W. Feeding ecology of cheetahs in the Maasai Mara, Kenya and the potential for intra- and interspecific competition. J. Zool. 304, 65–72 (2018).

    Article 

    Google Scholar 

  • Cooper, A. B., Pettorelli, N. & Durant, S. M. Large carnivore menus: factors affecting hunting decisions by cheetahs in the Serengeti. Anim. Behav. 73, 651–659 (2007).

    Article 

    Google Scholar 

  • Mills, M. G. L. Living near the edge: A review of the ecological relationships between large carnivores in the arid Kalahari. African J. Wildl. Res. 45, 127–137 (2015).

    Article 

    Google Scholar 

  • Rostro-García, S., Kamler, J. F. & Hunter, L. T. B. To kill, stay or flee: The effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa. PLoS ONE 10, e0117743 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Laurenson, M. K. Behavioural costs and constraints of lactation in free-living cheetahs. Anim. Behav. 50, 815–826 (1995).

    Article 

    Google Scholar 

  • Farhadinia, M. S. & Hemami, M.-R. Prey selection by the critically endangered Asiatic cheetah in central Iran. J. Nat. Hist. 44, 1239–1249 (2010).

    Article 

    Google Scholar 

  • Farhadinia, M. S. et al. Feeding ecology of the Asiatic cheetah Acinonyx jubatus venaticus in low prey habitats in northeastern Iran: Implications for effective conservation. J. Arid Environ. 87, 206–211 (2012).

    ADS 
    Article 

    Google Scholar 

  • Zahedian, B. & Nezami, B. Cheetah (Acinonyx jubatus venaticus) (Felidae: Carnivora) feeding ecology in Central Plateau of Iran and effects of prey poor management. J. Wildl. Biodivers. 3, 22–30 (2019).

    Google Scholar 

  • Zamani, N. et al. Predation of montane deserts ungulates by Asiatic cheetah Acinonyx jubatus venaticus in Central Iran. Folia Zool. 66, 50–57 (2017).

    Article 

    Google Scholar 

  • Monterroso, P. et al. Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe. J. Zool. 289, 243–250 (2013).

    Article 

    Google Scholar 

  • Morin, D. J. et al. Bias in carnivore diet analysis resulting from misclassification of predator scats based on field identification. Wildl. Soc. Bull. 40, 669–677 (2016).

    Article 

    Google Scholar 

  • Caro, T. M. Cheetahs of the Serengeti Plains: Group Living in an Asocial Species (University of Chicago Press, 1994).

    Google Scholar 

  • Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manage. 42, 528–532 (1978).

    Article 

    Google Scholar 

  • Jethva, B. D. & Jhala, Y. V. Computing biomass consumption from prey occurrences in Indian wolf scats. Zoo Biol. 23, 513–520 (2004).

    Article 

    Google Scholar 

  • Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shehzad, W. et al. Prey preference of Snow Leopard (Panthera uncia) in South Gobi Mongolia. PLoS ONE 7, e32104 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Monterroso, P. et al. Feeding ecological knowledge: the underutilised power of faecal DNA approaches for carnivore diet analysis. Mamm. Rev. 49, 97–112 (2019).

    Article 

    Google Scholar 

  • Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Araujo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Balme, G. A., Roex, N., Rogan, M. S. & Hunter, L. T. B. Ecological opportunity drives individual dietary specialization in leopards. J. Anim. Ecol. 89, 589–600 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar 

  • Harrington, L. A., Harrington, A. L., Hughes, J., Stirling, D. & Macdonald, D. W. The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland. Eur. J. Wildl. Res. 56, 377–384 (2010).

    Article 

    Google Scholar 

  • Weiskopf, S. R., Kachel, S. M. & McCarthy, K. P. What are snow leopards really eating? Identifying bias in food-habit studies. Wildl. Soc. Bull. 40, 233–240 (2016).

    Article 

    Google Scholar 

  • Durant, S. M., Caro, T. M., Collins, D. A., Alawi, R. M. & Fitzgibbon, C. D. Migration patterns of Thomson’s gazelles and cheetahs on the Serengeti Plains. Afr. J. Ecol. 26, 257–268 (1988).

    Article 

    Google Scholar 

  • Lindsey, P. A. et al. Minimum prey and area requirements of the vulnerable cheetah Acinonyx jubatus: implications for reintroduction and management of the species in South Africa. Oryx 45, 587–599 (2011).

    Article 

    Google Scholar 

  • Farhadinia, M. S., Akbari, H., Eslami, M. & Adibi, M. A. A review of ecology and conservation status of Asiatic cheetah in Iran. Cat News Spec. Issue 18–26 (2016).

  • Asadi, H. Some Observation on Hunting Behaviours of the Iranian Cheetah in Captivity. (1997).

  • Heptner, V. G. & Sludskii, A. A. Mammals ofthe Soviet Union volume II part 2 Carnivora (hyaenas and cats). (Vysshaya Shkola Publishers, 1974).

  • Ziaie, H. A Field Guide to the Mammals of Iran. (Iran Wildlife Center, 2008).

  • Wilson, J. W. et al. Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey. Biol. Lett. 9, 20130620 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grohé, C., Lee, B. & Flynn, J. J. Recent inner ear specialization for high-speed hunting in cheetahs. Sci. Rep. 8, 2301 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cheraghi, F. et al. Inter-dependent movements of Asiatic Cheetahs Acinonyx jubatus venaticus and a Persian Leopard Panthera pardus saxicolor in a desert environment in Iran (Mammalia: Felidae). Zool. Middle East 65, 283–292 (2019).

    Article 

    Google Scholar 

  • Ghoddousi, A., Soofi, M., Hamidi, A. K. & Lumetsberger, T. Assessing the role of livestock in big cat prey choice using spatiotemporal availability patterns. PLoS ONE 11, e0153439 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Khorozyan, I., Ghoddousi, A., Soofi, M. & Waltert, M. Big cats kill more livestock when wild prey reaches a minimum threshold. Biol. Conserv. 192, 268–275 (2015).

    Article 

    Google Scholar 

  • Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. 105, 11597–11604 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Daberger, M. Systematic prioritization of livestock grazing rights buyout in the last viable population of Asiatic cheetah (Acinonyx jubatus venaticus) in Iran. (Humboldt University Berlin, 2021).

  • Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Melzheimer, J. et al. Communication hubs of an asocial cat are the source of a human—carnivore conflict and key to its solution. Proc. Natl. Acad. Sci. 117, 33325–33333 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Malakoutikhah, S., Fakheran, S., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26, 1383–1396 (2020).

    Article 

    Google Scholar 

  • Long, R. A., Donovan, T. M., Mackay, P., Zielinski, W. J. & Buzas, J. S. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores. J. Wildl. Manage. 71, 2018–2025 (2007).

    Article 

    Google Scholar 

  • Becker, M. S. et al. Using dogs to find cats: Detection dogs as a survey method for wide-ranging cheetah. J. Zool. 302, 184–192 (2017).

    Article 

    Google Scholar 

  • Johnson, W. E. & O’Brien, S. J. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J. Mol. Evol. 44, S98–S116 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reese, E. M., Winters, M., Booth, R. K. & Wasser, S. K. Development of a mitochondrial DNA marker that distinguishes domestic dogs from Washington state gray wolves. Conserv. Genet. Resour. 12, 497–501 (2020).

    Article 

    Google Scholar 

  • Ormerod, S. J. Applied issues with predators and predation: Editor’s introduction. J. Appl. Ecol. 39, 181–188 (2002).

    Article 

    Google Scholar 

  • Boast, L. K., Good, K. & Klein, R. Translocation of problem predators: Is it an effective way to mitigate conflict between farmers and cheetahs Acinonyx jubatus in Botswana?. Oryx 50, 537–544 (2016).

    Article 

    Google Scholar 

  • Darvish Sefat, A. A. Atlas of Protected Areas of Iran (University of Tehran, 2006).

    Google Scholar 

  • Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).

    Article 

    Google Scholar 

  • Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran. (Iran Department of the Environment, 2016).

  • Abangah Consulting Engineer Company. Reconvene expanded Livestock Control Committee (LCC) in Touran and establish the LCC for Miandasht with participation of all stakeholders. (2017).

  • Mills, M. G. L. & Hofer, H. Hyaenas. Status Survey and Conservation Action Plan. (IUCN/SSC Hyaena Specualist Group, 1998).

  • Maudet, C., Luikart, G., Dubray, D., Von Hardenberg, A. & Taberlet, P. Low genotyping error rates in wild ungulate faeces sampled in winter. Mol. Ecol. Notes 4, 772–775 (2004).

    CAS 
    Article 

    Google Scholar 

  • Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Frantz, A. C. et al. Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol. Ecol. 12, 1649–1661 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boom, R. et al. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosel, P. E. & Kocher, T. D. DNA-based identification of larval cod in stomach contents of predatory fishes. J. Exp. Mar. Bio. Ecol. 267, 75–88 (2002).

    Article 

    Google Scholar 

  • Deagle, B. E. et al. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Mol. Ecol. 14, 1831–1842 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Riaz, T. et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc. Natl. Acad. Sci. 98, 5927–5932 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Menotti-Raymond, M. et al. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Charruau, P. et al. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: Evidence for long-term geographic isolates. Mol. Ecol. 20, 706–724 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Driscoll, C. A., Menotti-Raymond, M., Nelson, G., Goldstein, D. & O’Brien, S. J. Genomic microsatellites as evolutionary chronometers: A test in wild cats. Genome Res. 12, 414–423 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kotze, A., Ehlers, K., Cilliers, D. C. & Grobler, J. P. The power of resolution of microsatellite markers and assignment tests to determine the geographic origin of cheetah (Acinonyx jubatus) in Southern Africa. Mamm. Biol. 73, 457–462 (2008).

    Article 

    Google Scholar 

  • Marker, L. L. et al. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia. J. Hered. 99, 2–13 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Egeter, B. et al. Challenges for assessing vertebrate diversity in turbid Saharan water-bodies using environmental DNA. Genome 61, 807–814 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Godinho, R. et al. Real-time assessment of hybridization between wolves and dogs: Combining noninvasive samples with ancestry informative markers. Mol. Ecol. Resour. 15, 317–328 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Valière, N. GIMLET: A computer program for analysing individual identification data. Mol. Ecol. 2, 377–379 (2002).

    Google Scholar 

  • Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Breuer, T. Diet choice of large carnivores in northern Cameroon. Afr. J. Ecol. 43, 181–190 (2005).

    Article 

    Google Scholar 

  • Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geodesy 30, 2 (2007).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Getting the carbon out of India’s heavy industries

    Charting the landscape at MIT