Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).
Google Scholar
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Google Scholar
Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2014).
Google Scholar
Durant, S. M. et al. The global decline of cheetah Acinonyx jubatus and what it means for conservation. Proc. Natl. Acad. Sci. 114, 528–533 (2017).
Google Scholar
Jowkar, H. et al. Acinonyx jubatus ssp. venaticus. The IUCN Red List of Threatened Species 2008: e.T220A13035342. (2008).
Khalatbari, L., Yusefi, G. H., Martínez-Freiría, F., Jowkar, H. & Brito, J. C. Availability of prey and natural habitats are related with temporal dynamics in range and habitat suitability for Asiatic Cheetah. Hystrix 29, 145–151 (2018).
Asadi, H. The Environmental Limitations and Future of the Asiatic Cheetah in Iran. (1997).
CACP. Annual Report. (2014).
Khalatbari, L., Jowkar, H., Yusefi, G. H., Brito, J. C. & Ostrowski, S. The current status of Asiatic cheetah in Iran. Cat News 66, 10–13 (2017).
Marker, L. L. et al. Ecology of free-ranging cheetahs. in Cheetahs: Biology and Conservation (eds. Marker, L. L., Boast, L. K. & Schmidt-Kuntzel, A.) 107–119 (Elsevier, 2017). doi:https://doi.org/10.1016/B978-0-12-804088-1.00008-3
Hayward, M. W., Hofmeyr, M., O’Brian, J. & Kerley, G. I. H. Prey preferences of the cheetah (Acinonyx jubatus) (Felidae: Carnivora): morphological limitations or the need to capture rapidly consumable prey before kleptoparasites arrive?. J. Zool. 270, 615–627 (2006).
Google Scholar
Mills, M. G. L., Broomhall, L. S. & Toit, J. T. Cheetah Acinonyx jubatus feeding ecology in the Kruger National Park and a comparison across African savanna habitats: is the cheetah only a successful hunter on open grassland plains?. Wildlife Biol. 10, 177–186 (2004).
Google Scholar
Wachter, B., Jauernig, O. & Breitenmoser, U. Determination of prey hair in faeces of free-ranging Namibian cheetahs with a simple method. Cat News 44, 8–9 (2006).
Marker, L. L., Muntifering, J. R., Dickman, A. J., Mills, M. G. L. & Macdonald, D. W. Quantifying prey preferences of free-ranging Namibian cheetahs. South Afr. J. Wildl. Res. 33, 43–53 (2003).
Wacher, T. et al. Sahelo-Saharan Interest Group Wildlife Surveys, Part 4: Ahaggar Mountains, Algeria (March 2005). (2005).
Thuo, D. et al. An insight into the prey spectra and livestock predation by cheetahs in Kenya using faecal DNA metabarcoding. Zoology 143, 125853 (2020).
Google Scholar
Broekhuis, F., Thuo, D. & Hayward, M. W. Feeding ecology of cheetahs in the Maasai Mara, Kenya and the potential for intra- and interspecific competition. J. Zool. 304, 65–72 (2018).
Google Scholar
Cooper, A. B., Pettorelli, N. & Durant, S. M. Large carnivore menus: factors affecting hunting decisions by cheetahs in the Serengeti. Anim. Behav. 73, 651–659 (2007).
Google Scholar
Mills, M. G. L. Living near the edge: A review of the ecological relationships between large carnivores in the arid Kalahari. African J. Wildl. Res. 45, 127–137 (2015).
Google Scholar
Rostro-García, S., Kamler, J. F. & Hunter, L. T. B. To kill, stay or flee: The effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa. PLoS ONE 10, e0117743 (2015).
Google Scholar
Laurenson, M. K. Behavioural costs and constraints of lactation in free-living cheetahs. Anim. Behav. 50, 815–826 (1995).
Google Scholar
Farhadinia, M. S. & Hemami, M.-R. Prey selection by the critically endangered Asiatic cheetah in central Iran. J. Nat. Hist. 44, 1239–1249 (2010).
Google Scholar
Farhadinia, M. S. et al. Feeding ecology of the Asiatic cheetah Acinonyx jubatus venaticus in low prey habitats in northeastern Iran: Implications for effective conservation. J. Arid Environ. 87, 206–211 (2012).
Google Scholar
Zahedian, B. & Nezami, B. Cheetah (Acinonyx jubatus venaticus) (Felidae: Carnivora) feeding ecology in Central Plateau of Iran and effects of prey poor management. J. Wildl. Biodivers. 3, 22–30 (2019).
Zamani, N. et al. Predation of montane deserts ungulates by Asiatic cheetah Acinonyx jubatus venaticus in Central Iran. Folia Zool. 66, 50–57 (2017).
Google Scholar
Monterroso, P. et al. Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe. J. Zool. 289, 243–250 (2013).
Google Scholar
Morin, D. J. et al. Bias in carnivore diet analysis resulting from misclassification of predator scats based on field identification. Wildl. Soc. Bull. 40, 669–677 (2016).
Google Scholar
Caro, T. M. Cheetahs of the Serengeti Plains: Group Living in an Asocial Species (University of Chicago Press, 1994).
Floyd, T. J., Mech, L. D. & Jordan, P. A. Relating wolf scat content to prey consumed. J. Wildl. Manage. 42, 528–532 (1978).
Google Scholar
Jethva, B. D. & Jhala, Y. V. Computing biomass consumption from prey occurrences in Indian wolf scats. Zoo Biol. 23, 513–520 (2004).
Google Scholar
Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
Google Scholar
Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175 (2019).
Google Scholar
Shehzad, W. et al. Prey preference of Snow Leopard (Panthera uncia) in South Gobi Mongolia. PLoS ONE 7, e32104 (2012).
Google Scholar
Monterroso, P. et al. Feeding ecological knowledge: the underutilised power of faecal DNA approaches for carnivore diet analysis. Mamm. Rev. 49, 97–112 (2019).
Google Scholar
Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).
Google Scholar
Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).
Google Scholar
Araujo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).
Google Scholar
Balme, G. A., Roex, N., Rogan, M. S. & Hunter, L. T. B. Ecological opportunity drives individual dietary specialization in leopards. J. Anim. Ecol. 89, 589–600 (2020).
Google Scholar
Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
Google Scholar
Harrington, L. A., Harrington, A. L., Hughes, J., Stirling, D. & Macdonald, D. W. The accuracy of scat identification in distribution surveys: American mink, Neovison vison, in the northern highlands of Scotland. Eur. J. Wildl. Res. 56, 377–384 (2010).
Google Scholar
Weiskopf, S. R., Kachel, S. M. & McCarthy, K. P. What are snow leopards really eating? Identifying bias in food-habit studies. Wildl. Soc. Bull. 40, 233–240 (2016).
Google Scholar
Durant, S. M., Caro, T. M., Collins, D. A., Alawi, R. M. & Fitzgibbon, C. D. Migration patterns of Thomson’s gazelles and cheetahs on the Serengeti Plains. Afr. J. Ecol. 26, 257–268 (1988).
Google Scholar
Lindsey, P. A. et al. Minimum prey and area requirements of the vulnerable cheetah Acinonyx jubatus: implications for reintroduction and management of the species in South Africa. Oryx 45, 587–599 (2011).
Google Scholar
Farhadinia, M. S., Akbari, H., Eslami, M. & Adibi, M. A. A review of ecology and conservation status of Asiatic cheetah in Iran. Cat News Spec. Issue 18–26 (2016).
Asadi, H. Some Observation on Hunting Behaviours of the Iranian Cheetah in Captivity. (1997).
Heptner, V. G. & Sludskii, A. A. Mammals ofthe Soviet Union volume II part 2 Carnivora (hyaenas and cats). (Vysshaya Shkola Publishers, 1974).
Ziaie, H. A Field Guide to the Mammals of Iran. (Iran Wildlife Center, 2008).
Wilson, J. W. et al. Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey. Biol. Lett. 9, 20130620 (2013).
Google Scholar
Grohé, C., Lee, B. & Flynn, J. J. Recent inner ear specialization for high-speed hunting in cheetahs. Sci. Rep. 8, 2301 (2018).
Google Scholar
Cheraghi, F. et al. Inter-dependent movements of Asiatic Cheetahs Acinonyx jubatus venaticus and a Persian Leopard Panthera pardus saxicolor in a desert environment in Iran (Mammalia: Felidae). Zool. Middle East 65, 283–292 (2019).
Google Scholar
Ghoddousi, A., Soofi, M., Hamidi, A. K. & Lumetsberger, T. Assessing the role of livestock in big cat prey choice using spatiotemporal availability patterns. PLoS ONE 11, e0153439 (2016).
Google Scholar
Khorozyan, I., Ghoddousi, A., Soofi, M. & Waltert, M. Big cats kill more livestock when wild prey reaches a minimum threshold. Biol. Conserv. 192, 268–275 (2015).
Google Scholar
Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. 105, 11597–11604 (2008).
Google Scholar
Daberger, M. Systematic prioritization of livestock grazing rights buyout in the last viable population of Asiatic cheetah (Acinonyx jubatus venaticus) in Iran. (Humboldt University Berlin, 2021).
Wolf, C. & Ripple, W. J. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252 (2016).
Google Scholar
Melzheimer, J. et al. Communication hubs of an asocial cat are the source of a human—carnivore conflict and key to its solution. Proc. Natl. Acad. Sci. 117, 33325–33333 (2020).
Google Scholar
Malakoutikhah, S., Fakheran, S., Tarkesh, M. & Senn, J. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib. 26, 1383–1396 (2020).
Google Scholar
Long, R. A., Donovan, T. M., Mackay, P., Zielinski, W. J. & Buzas, J. S. Comparing scat detection dogs, cameras, and hair snares for surveying carnivores. J. Wildl. Manage. 71, 2018–2025 (2007).
Google Scholar
Becker, M. S. et al. Using dogs to find cats: Detection dogs as a survey method for wide-ranging cheetah. J. Zool. 302, 184–192 (2017).
Google Scholar
Johnson, W. E. & O’Brien, S. J. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J. Mol. Evol. 44, S98–S116 (1997).
Google Scholar
Reese, E. M., Winters, M., Booth, R. K. & Wasser, S. K. Development of a mitochondrial DNA marker that distinguishes domestic dogs from Washington state gray wolves. Conserv. Genet. Resour. 12, 497–501 (2020).
Google Scholar
Ormerod, S. J. Applied issues with predators and predation: Editor’s introduction. J. Appl. Ecol. 39, 181–188 (2002).
Google Scholar
Boast, L. K., Good, K. & Klein, R. Translocation of problem predators: Is it an effective way to mitigate conflict between farmers and cheetahs Acinonyx jubatus in Botswana?. Oryx 50, 537–544 (2016).
Google Scholar
Darvish Sefat, A. A. Atlas of Protected Areas of Iran (University of Tehran, 2006).
Yusefi, G. H., Faizolahi, K., Darvish, J., Safi, K. & Brito, J. C. The species diversity, distribution, and conservation status of the terrestrial mammals of Iran. J. Mammal. 100, 55–71 (2019).
Google Scholar
Karami, M., Ghadirian, T. & Faizolahi, K. The Atlas of the Mammals of Iran. (Iran Department of the Environment, 2016).
Abangah Consulting Engineer Company. Reconvene expanded Livestock Control Committee (LCC) in Touran and establish the LCC for Miandasht with participation of all stakeholders. (2017).
Mills, M. G. L. & Hofer, H. Hyaenas. Status Survey and Conservation Action Plan. (IUCN/SSC Hyaena Specualist Group, 1998).
Maudet, C., Luikart, G., Dubray, D., Von Hardenberg, A. & Taberlet, P. Low genotyping error rates in wild ungulate faeces sampled in winter. Mol. Ecol. Notes 4, 772–775 (2004).
Google Scholar
Deagle, B. E., Kirkwood, R. & Jarman, S. N. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).
Google Scholar
Frantz, A. C. et al. Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol. Ecol. 12, 1649–1661 (2003).
Google Scholar
Boom, R. et al. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990).
Google Scholar
Rosel, P. E. & Kocher, T. D. DNA-based identification of larval cod in stomach contents of predatory fishes. J. Exp. Mar. Bio. Ecol. 267, 75–88 (2002).
Google Scholar
Deagle, B. E. et al. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Mol. Ecol. 14, 1831–1842 (2005).
Google Scholar
Riaz, T. et al. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145 (2011).
Google Scholar
Luikart, G. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc. Natl. Acad. Sci. 98, 5927–5932 (2001).
Google Scholar
Menotti-Raymond, M. et al. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23 (1999).
Google Scholar
Charruau, P. et al. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: Evidence for long-term geographic isolates. Mol. Ecol. 20, 706–724 (2011).
Google Scholar
Driscoll, C. A., Menotti-Raymond, M., Nelson, G., Goldstein, D. & O’Brien, S. J. Genomic microsatellites as evolutionary chronometers: A test in wild cats. Genome Res. 12, 414–423 (2002).
Google Scholar
Kotze, A., Ehlers, K., Cilliers, D. C. & Grobler, J. P. The power of resolution of microsatellite markers and assignment tests to determine the geographic origin of cheetah (Acinonyx jubatus) in Southern Africa. Mamm. Biol. 73, 457–462 (2008).
Google Scholar
Marker, L. L. et al. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia. J. Hered. 99, 2–13 (2008).
Google Scholar
Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).
Google Scholar
Egeter, B. et al. Challenges for assessing vertebrate diversity in turbid Saharan water-bodies using environmental DNA. Genome 61, 807–814 (2018).
Google Scholar
Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Google Scholar
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
Google Scholar
Godinho, R. et al. Real-time assessment of hybridization between wolves and dogs: Combining noninvasive samples with ancestry informative markers. Mol. Ecol. Resour. 15, 317–328 (2015).
Google Scholar
Valière, N. GIMLET: A computer program for analysing individual identification data. Mol. Ecol. 2, 377–379 (2002).
Wachter, B. et al. An advanced method to assess the diet of free-ranging large carnivores based on scats. PLoS ONE 7, e38066 (2012).
Google Scholar
Breuer, T. Diet choice of large carnivores in northern Cameroon. Afr. J. Ecol. 43, 181–190 (2005).
Google Scholar
Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geodesy 30, 2 (2007).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Source: Ecology - nature.com