in

Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert

  • Chibuike, G. U. & Obiora, S. C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 1–12. https://doi.org/10.1155/2014/752708 (2014).

    CAS 
    Article 

    Google Scholar 

  • Baek, S. A. et al. Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol. J. 28, 446–452. https://doi.org/10.5423/PPJ.NT.01.2012.0006 (2012).

    CAS 
    Article 

    Google Scholar 

  • Gong, Z. Z. et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63, 635–674. https://doi.org/10.1007/s11427-020-1683-x (2020).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Pravin, U. S., Manisha, P. T. & Ravindra, M. M. Sediment heavy metal contaminants in Vasai Creek of Mumbai: Pollution impacts. Am. Chem. Soc. 2(3), 171–180. https://doi.org/10.5923/j.chemistry.20120203.13 (2012).

    CAS 
    Article 

    Google Scholar 

  • Kim, Y. H. et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14, 1–13. https://doi.org/10.1186/1471-2229-14-13 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mao, F. et al. The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Int. J. Phytoremed. 20, 1113–1120. https://doi.org/10.1080/15226514.2017.1365346 (2018).

    CAS 
    Article 

    Google Scholar 

  • Reichman, S. M., Menzies, N. W., Asher, C. J. & Mulligan, D. R. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant Soil. 258, 341–350. https://doi.org/10.1023/B:PLSO.0000016564.14512.eb (2004).

    CAS 
    Article 

    Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983. https://doi.org/10.1021/es305071v (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. C. et al. Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol. Eng. 106, 273–278. https://doi.org/10.1016/j.ecoleng.2017.05.051 (2017).

    Article 

    Google Scholar 

  • Hassan, M. J. et al. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9, 1575. https://doi.org/10.3390/plants9111575 (2020).

    CAS 
    Article 

    Google Scholar 

  • Patra, M., Bhowmik, N., Bandopadhyay, B. & Sharma, A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 52, 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009 (2004).

    CAS 
    Article 

    Google Scholar 

  • Zhou, Z. S., Wang, S. J. & Yang, Z. M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70, 1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Biczak, R. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants. J. Hazard. Mater. 304, 173–185. https://doi.org/10.1016/j.jhazmat.2015.10.055 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q. & Yang, Z. M. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19, 1285–1293. https://doi.org/10.1007/s10646-010-0514-z (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gao, S. et al. Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J. Hazard. Mater. 182, 591–597. https://doi.org/10.1016/j.jhazmat.2010.06.073 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Warren, S. D. et al. Reproduction and dispersal of biological soil crust organisms. Front. Ecol. Evol. 7, 1–17. https://doi.org/10.3389/FEVO.2019.00344 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • Wu, L. & Zhang, Y. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid. Land. 10, 701–711. https://doi.org/10.1007/s40333-018-0065-3 (2018).

    Article 

    Google Scholar 

  • Hu, R. et al. The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity. Sci. Total Environ. 722, 137849. https://doi.org/10.1016/j.scitotenv.2020.137849 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants. 2(7), 16076. https://doi.org/10.1038/nplants.2016.76 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Coe, K. K. et al. Strategies of desiccation tolerance vary across life phases in the moss Syntrichia caninervis. Am. J. Bot. 108, 249–262. https://doi.org/10.1002/ajb2.1571 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Silva, A. T. et al. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. Plant J. 105, 1339–1356. https://doi.org/10.1111/tpj.15116 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Young, K. & Reed, S. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes. Sci. Rep. 7, 41793. https://doi.org/10.1038/srep41793 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. & Zhang, Y. M. Ecophysiological responses of the biocrust moss Syntrichia caninervis to experimental snow cover manipulations in a temperate desert of central Asia. Ecol. Res. 35, 198–207. https://doi.org/10.1111/1440-1703.12072 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zheng, Y. P., Zhao, J. C., Zhang, B. C., Li, L. & Zhang, Y. M. Advances on ecological studies of algae and mosses in biological soil crusts. Chin. J. Bot. 44, 371–378 (2009).

    CAS 

    Google Scholar 

  • Mei, L. et al. Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants 10, 1494. https://doi.org/10.3390/plants10081494 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Z. S. et al. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J. Inorg. Biochem. 101, 1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011 (2007).

    CAS 
    Article 

    Google Scholar 

  • Yuniarti, R. & Yuniati, R. Mercury effects on the early seedling of Paraserianthes falcataria (L.) Nielsen grew in hydroponic culture. IOP Conf. Ser. Mater. Sci. Eng. 902, 012073. https://doi.org/10.1088/1757-899X/902/1/012073 (2020).

    CAS 
    Article 

    Google Scholar 

  • Li, Y. et al. Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. J. Plant Physiol. 167, 1390–1397. https://doi.org/10.1016/j.jplph.2010.05.028 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Deng, B. L., Yang, K. J., Zhang, Y. F. & Li, Z. T. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environ. Pollut. 216, 46–52. https://doi.org/10.1016/j.envpol.2016.05.050 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Khan, K. Y. et al. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmiums accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). Ecotoxicol. Environ. Saf. 200, 110748. https://doi.org/10.1016/j.ecoenv.2020.110748 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arnon, D. L. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    CAS 
    Article 

    Google Scholar 

  • Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 (1973).

    CAS 
    Article 

    Google Scholar 

  • Luo, X. L. & Huang, Q. F. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in Cassava. J. Agric. Sci. 3, 64–72. https://doi.org/10.5539/jas.v3n2p64 (2011).

    Article 

    Google Scholar 

  • Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) broth under chromium and lead phytotoxicity. Water Air Soil Pollut. 167, 73–90. https://doi.org/10.1007/s11270-005-8682-9 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kumar, A., Dutt, S., Bagler, G., Ahuja, P. S. & Kumar, S. Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50°C, which also tolerates autoclaving. Sci. Rep. 2, 347–351. https://doi.org/10.1038/srep00387 (2012).

    CAS 
    Article 

    Google Scholar 

  • Pasquariello, M. S. et al. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest. Biol. Technol. 109, 45–46. https://doi.org/10.1016/j.postharvbio.2015.06.007 (2015).

    CAS 
    Article 

    Google Scholar 

  • Emamverdian, A., Ding, Y. L., Mokhberdoran, F. & Xie, Y. F. Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci. World J. 2018, 1–6. https://doi.org/10.1155/2018/1219364 (2018).

    CAS 
    Article 

    Google Scholar 

  • Sahu, G. K., Upadhyay, S. & Sahoo, B. B. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants 18, 21–31. https://doi.org/10.1007/s12298-011-0090-6 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, R. Y. et al. Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environ. Sci. Pollut. Res. 25, 28695–28704. https://doi.org/10.1007/s11356-018-2918-x (2018).

    CAS 
    Article 

    Google Scholar 

  • Esposito, S. et al. In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0195717 (2018).

    CAS 
    Article 

    Google Scholar 

  • Qureshi, S. et al. Effect of microbial activity on trace element release from sewage sludge. Environ. Sci. Technol. 37, 3361–3366. https://doi.org/10.1021/es020970h (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lebeau, T., Bagot, D., Jézéquel, K. & Fabre, B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 291, 73–83. https://doi.org/10.1016/S0048-9697(01)01093-2 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cho, U. H. & Park, J. O. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 156, 1–9. https://doi.org/10.1016/S0168-9452(00)00227-2 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chen, J. et al. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18, 110–121. https://doi.org/10.1007/s10646-008-0264-3 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bellini, E. et al. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. Int. J. Mol. Sci. 21, 1583. https://doi.org/10.3390/ijms21051583 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Altaf, M. A. et al. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J. Soil Sci. Plant Nutr. 21, 1842–1855. https://doi.org/10.1007/s42729-021-00484-2 (2021).

    CAS 
    Article 

    Google Scholar 

  • Zhang, H. H. et al. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol. Environ. Saf. 195, 110469. https://doi.org/10.1016/j.ecoenv.2020.110469 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xiong, A. S. et al. Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol. Biotechnol. 53, 198–206. https://doi.org/10.1007/s12033-012-9515-x (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hare, P. D., Cress, W. A. & Staden, J. V. Proline synthesis and degradation: A model system for elucidating stress-related signal transduction. J. Exp. Bot. 50, 413–434. https://doi.org/10.1093/jxb/50.333.413 (1999).

    CAS 
    Article 

    Google Scholar 

  • Székely, G. et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53, 11–28. https://doi.org/10.1111/j.1365-313X.2007.03318.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mishra, P., Bhoomika, K. & Dubey, R. S. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250, 3–19. https://doi.org/10.1007/s00709-011-0365-3 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19. https://doi.org/10.1016/j.tplants.2016.08.002 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kolahi, M., Kazemi, E. M., Yazdi, M. & Barnaby, A. G. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiol. Biochem. 146, 71–89. https://doi.org/10.1016/j.plaphy.2019.10.032 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Merwald, H. et al. UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J. Photochem. Photobiol. B Biol. 79, 197–207. https://doi.org/10.1016/j.jphotobiol.2005.01.002 (2005).

    CAS 
    Article 

    Google Scholar 

  • Pazmiño, D. M. et al. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: Role of reactive oxygen species. Plant Cell Environ. 34, 1874–1889. https://doi.org/10.1111/j.1365-3040.2011.02383.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ghori, N. H. et al. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. (Tehran) 16, 1807–1828. https://doi.org/10.1007/s13762-019-02215-8 (2019).

    CAS 
    Article 

    Google Scholar 

  • Vezza, M. E., Llanes, A., Travaglia, C., Agostini, E. & Talano, M. A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 123, 8–17. https://doi.org/10.1016/j.plaphy.2017.11.020 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • C, A., Tasdighi, H. & Gholamhoseini, M.,. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 6(10), 886–891. https://doi.org/10.1016/j.apjtb.2016.08.009 (2016).

    CAS 
    Article 

    Google Scholar 

  • Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7), 285. https://doi.org/10.3390/biom9070285 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Zhang, S. S., Zhang, H. M., Qin, R., Jiang, W. S. & Liu, D. H. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18, 814–823. https://doi.org/10.1007/s10646-009-0324-3 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks

    Periodically taken photographs reveal the effect of pollinator insects on seed set in lotus flowers