in

Last glacial loess dynamics in the Southern Caucasus (NE-Armenia) and the phenomenon of missing loess deposition during MIS-2

  • Lehmkuhl, F. et al. Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 215, 103496 (2021).

    Article 

    Google Scholar 

  • Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M. A. & Gao, G. Loess genesis and worldwide distribution. Earth Sci. Rev. 201, 102947 (2020).

    Article 

    Google Scholar 

  • Moine, O. et al. The impact of last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. PNAS 114, 6209–6214 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS 114, E10632–E10638 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rousseau, D.-D. et al. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophys. Res. Lett. 34, L22713 (2007).

    ADS 
    Article 

    Google Scholar 

  • Rousseau, D.-D. et al. Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Clim. Past. 13, 1181–1197 (2017).

    Article 

    Google Scholar 

  • Fischer, P. et al. Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). CATENA 196, 104913 (2021).

    Article 

    Google Scholar 

  • Wolf, D. et al. Evidence for strong relations between the Upper Tagus Loess Formation (Central Iberia) and the marine atmosphere off the Iberian Margin during the Last Glacial Period. Quat. Res. 101, 84–113 (2021).

    Article 

    Google Scholar 

  • Porter, S. & An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sun, Y. et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci. 5, 46–49 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zeeden, C. et al. Patterns and timing of loess-palaeosol transitions in Eurasia: Constraints for palaeoclimate studies. Glob. Planet. Change 162, 1–7 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705 (2012).

    ADS 
    Article 

    Google Scholar 

  • Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).

    ADS 
    Article 

    Google Scholar 

  • Youn, J. H., Seong, Y. B., Choi, J. H., Abdrakhmatov, K. & Ormukov, C. Loess deposits in the northern Kyrgyz Tien Shan: Implications for the paleoclimate reconstruction during the Late Quaternary. CATENA 117, 81–93 (2014).

    Article 

    Google Scholar 

  • Li, Y. et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 14, 271–286 (2018).

    Article 

    Google Scholar 

  • Frechen, M., Oches, E. A. & Kohfeld, K. E. Loess in Europe—Mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. 22, 1835–1857 (2003).

    ADS 
    Article 

    Google Scholar 

  • Antoine, P. et al. High resolution record of the last climatic cycle in the southern carpathian basin at Surduk (vojvodina, Serbia). Quat. Int. 198, 19–36 (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • Antoine, P. et al. Upper Pleistocene loess-palaeosols records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 411, 4–24 (2016).

    Article 

    Google Scholar 

  • Kang, S., Roberts, H. M., Wang, X., An, Z. S. & Wang, M. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the last glacial maximum. Aeol. Res. 19, 251–258 (2015).

    Article 

    Google Scholar 

  • Fitzsimmons, K. E. et al. Loess accumulation in the Tian Shan piedmont: Implications for palaeoenvironmental change in arid Central Asia. Quat. Int. 469, 30–43 (2018).

    Article 

    Google Scholar 

  • Li, Y., Song, Y., Qiang, M., Miao, Y. & Zeng, M. Atmospheric dust variations in the Ili Basin, northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence. J. Geophys. Res. Atmos. 124, 8449–8466 (2019).

    ADS 
    Article 

    Google Scholar 

  • Pinto, J. G. & Ludwig, P. Extratropical cyclones over the North Atlantic and western Europe during the last glacial maximum and implications for proxy interpretation. Clim. Past 16, 611–626 (2020).

    Article 

    Google Scholar 

  • Cheng, L. et al. Drivers for asynchronous patterns of dust accumulation in central and eastern Asia and in Greenland during the Last Glacial Maximum. Geophys. Res. Lett. 48, e2020GL01194 (2021).

    Google Scholar 

  • Fenn, K. et al. A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube. Quat. Sci. Rev. 274, 107264 (2021).

    Article 

    Google Scholar 

  • Song, Y. et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclim. Palaeoecol. 567, 110279 (2021).

    ADS 
    Article 

    Google Scholar 

  • Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).

    Article 

    Google Scholar 

  • Baykal, Y. et al. Detrital zircon U-Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain. Quat. Sci. Rev. 274, 107265 (2021).

    Article 

    Google Scholar 

  • Pötter, S. et al. Disentangling sedimentary pathways for the Pleniglacial Lower Danube loess based on geochemical signatures. Front. Earth Sci. 9, 150 (2021).

    ADS 
    Article 

    Google Scholar 

  • Prud’homme, C. et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe. Quat. Sci. Rev. 179, 158–166 (2018).

    ADS 
    Article 

    Google Scholar 

  • Obreht, I. et al. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Sci. Rev. 190, 498–520 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Joannin, S. et al. Vegetation, fire and climate history of the Lesser Caucasus: A new Holocene record from Zarishat fen (Armenia). J. Quat. Sci. 29, 70–82 (2014).

    Article 

    Google Scholar 

  • Brittingham, A. et al. Influence of the north atlantic oscillation on δD and δ18O in meteoric water in the Armenian highland. J. Hydrol. 575, 513–522 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bohn, U., Zazanashvili, N. & Nakhutsrishvili, G. The map of the natural vegetation of Europe and its application in the caucasus ecoregion. Bull. Georgian Natl. Acad. Sci. 175, 112–121 (2007).

    Google Scholar 

  • Trigui, Y. et al. First calibration and application of leaf wax n-alkane biomarkers in Loess-Paleosol sequences and modern plants and soils in Armenia. Geosciences 9, 263 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Richter, C. et al. New insights into southern Caucasian glacial-interglacial climate conditions inferred from Quaternary Gastropod Fauna. J. Quat. Sci. 35, 634–649 (2020).

    Article 

    Google Scholar 

  • Kharzyan, E. Geological Map of Republic of Armenia (Ministry of Nature Protection of Republic of Armenia, 2005).

    Google Scholar 

  • Sosson, M. et al. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geol. Soc. Spec. Publ. 340, 329–352 (2010).

    ADS 
    Article 

    Google Scholar 

  • Lomax, J. et al. Testing post-IR-IRSL dating on Armenian loess palaeosol sections against independent age control. Quat. Geochron. 69, 101265 (2021).

    Article 

    Google Scholar 

  • Újvári, G., Kovács, J., Varga, G., Raucsik, B. & Markovic, S. B. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: A review. Quat. Sci. Rev. 29, 3157–3166 (2010).

    ADS 
    Article 

    Google Scholar 

  • Rudnick, R. L. & Gao, S. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).

    Google Scholar 

  • Újvári, G., Varga, A. & Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 69, 421–437 (2008).

    Article 
    CAS 

    Google Scholar 

  • Galoyan, G. et al. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. J. Asian Earth Sci. 34, 135–153 (2009).

    ADS 
    Article 

    Google Scholar 

  • Hässig, M. et al. New structural and petrological data on the Amasia ophiolites (NW Sevan-Akera suture zone, Lesser Caucasus): Insights for a large-scale obduction in Armenia and NE Turkey. Tectonophysics 588, 135–153 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sahakyan, L. et al. Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. in Tectonic Evolution of the Eastern Black Sea and Caucasus (eds. Sosson, M., Stephenson, R. A., Adamia, S. A.). Geological Society Special Publication. Vol. 428. (2016).

  • Obreht, I. et al. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Sci. Rep. 6, 36334 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Profe, J., Wacha, L., Frechen, M., Ohlendorf, C. & Zolitschka, B. XRF scanning of discrete samples—A chemostratigraphic approach exemplified for loess-paleosol sequences from the Island of Susak, Croatia. Quat. Int. 494, 34–51 (2018).

    Article 

    Google Scholar 

  • Profe, J., Zolitschka, B., Schirmer, W., Frechen, M. & Ohlendorf, C. Geochemistry unravels MIS3/2 paleoenvironmental dynamics at the loess-paleosol sequence Schwalbenberg II, Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 459, 537–551 (2016).

    ADS 
    Article 

    Google Scholar 

  • Zeeden, C. et al. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)—Implications for dust accumulation in south-eastern Europe. Quat. Sci. Rev. 154, 130–142 (2016).

    ADS 
    Article 

    Google Scholar 

  • Song, Y. et al. Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. J. Asian Earth Sci. 155, 68–80 (2018).

    ADS 
    Article 

    Google Scholar 

  • Rouzaut, S. & Orgeira, M. J. Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud. Geophys. Geod. 61, 361–384 (2017).

    ADS 
    Article 

    Google Scholar 

  • Campodonico, V. A., Rouzaut, S. & Pasquini, A. I. Geochemistry of a Late Quaternary loess-paleosol sequence in central Argentina: Implications for weathering, sedimentary recycling and provenance. Geoderma 351, 235–249 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wolf, D. et al. Loess in Armenia—Stratigraphic findings and palaeoenvironmental indications. Proc. Geol. Assoc. 127, 29–39 (2016).

    Article 

    Google Scholar 

  • Buggle, B. et al. Iron mineralogical proxies and Quaternary climate change in SE-European Loess–Paleosol sequences. CATENA 117, 4–22 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bradák, B. et al. Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in Loess. Palaeogeogr. Palaeoclim. Palaeoecol. 569, 110329 (2021).

    ADS 
    Article 

    Google Scholar 

  • Laag, C. et al. A detailed paleoclimate proxy record for the Middle Danube Basin over the Last 430 kyr: A rock magnetic and colorimetric study of the Zemun loess-paleosol sequence. Front. Earth Sci. 9, 600086 (2021).

    ADS 
    Article 

    Google Scholar 

  • Baumgart, P., Hambach, U., Meszner, S. & Faust, D. An environmental magnetic fingerprint of periglacial loess: Records of Late Pleistocene loess–palaeosol sequences from eastern Germany. Quat. Int. 296, 82–93 (2013).

    Article 

    Google Scholar 

  • Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles. PNAS 115, E11005–E11014 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard-Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).

    ADS 
    Article 

    Google Scholar 

  • Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    ADS 
    Article 

    Google Scholar 

  • Martrat, B. et al. Four climate cycles ofrecurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jin, L., Chen, F., Ganopolski, A. & Claussen, M. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res. 112, D06117 (2007).

    ADS 

    Google Scholar 

  • Sun, Y., Wang, X., Liu, Q. & Clemens, S. C. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171–179 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Yang, S. & Ding, Z. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem. Geophys. Geosyst. 15, 798–814 (2014).

    ADS 
    Article 

    Google Scholar 

  • Obreht, I. et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Antoine, P. et al. Evidence of rapid and cyclic eolian deposition during the Last Glacial in European loess series (Loess events): The high-resolution records from Nussloch (Germany). Quat. Sci. Rev. 28, 2955–2973 (2009).

    ADS 
    Article 

    Google Scholar 

  • Rousseau, D. D. et al. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Clim. Past 7, 221–234 (2011).

    Article 

    Google Scholar 

  • Machalett, B. et al. Aeolian dust dynamics in Central Asia during the Pleistocene: driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophys. Geochem. Geosyst. 9, Q08Q09 (2008).

    Article 
    CAS 

    Google Scholar 

  • Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    ADS 
    Article 

    Google Scholar 

  • Kutzbach, J., Chen, G., Cheng, H., Edwards, R. & Liu, Z. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim. Dynam. 42, 1079–1095 (2014).

    ADS 
    Article 

    Google Scholar 

  • Marković, S. B. et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth Sci. Rev. 148, 228–258 (2015).

    ADS 
    Article 

    Google Scholar 

  • Li, G. et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the penultimate glaciation. Earth Planet. Sci. Lett. 448, 1–12 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lomax, J. et al. A luminescence-based chronology for the Harletz Loess sequence, Bulgaria. Boreas 48, 179–194 (2019).

    Article 

    Google Scholar 

  • Kehl, M. et al. Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands—New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quat. Sci. Rev. 253, 106774 (2021).

    Article 

    Google Scholar 

  • Ganopolski, A., Calov, R. & Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 6, 229–244 (2010).

    Article 

    Google Scholar 

  • Malinsky-Buller, A. et al. Evidence for Middle Palaeolithic occupation and landscape change in central Armenia at the open-air site of Alapars-1. Quat. Res. 99, 223–247 (2021).

    Article 

    Google Scholar 

  • Rao, Z. et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci. Rep. 3, 2785 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stevens, T., Marković, S. B., Zech, M., Hambach, U. & Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 30, 662–681 (2011).

    ADS 
    Article 

    Google Scholar 

  • Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).

    ADS 
    Article 

    Google Scholar 

  • Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Clim. Past 11, 1491–1505 (2015).

    Article 

    Google Scholar 

  • Wegwerth, A. et al. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea “Lake”. Quat. Sci. Rev. 135, 41–53 (2016).

    ADS 
    Article 

    Google Scholar 

  • Ollivier, V., Fontugne, M. & Lyonnet, B. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109–124 (2015).

    ADS 
    Article 

    Google Scholar 

  • Egeland, C. P. et al. Bagratashen 1, a stratified open-air Middle Paleolithic site in the Debed river valley of northeastern Armenia: A preliminary report. Archaeol. Res. Asia 8, 1–20 (2016).

    Article 

    Google Scholar 

  • von Suchodoletz, H., Gärtner, A., Zielhofer, C. & Faust, D. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus. Quat. Sci. Rev. 191, 189–203 (2018).

    ADS 
    Article 

    Google Scholar 

  • Langbein, W. B. & Schumm, S. A. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 39, 1076–1084 (1958).

    ADS 
    Article 

    Google Scholar 

  • Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).

    ADS 
    Article 

    Google Scholar 

  • Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).

    Article 

    Google Scholar 

  • Reber, R. et al. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quat. Sci. Rev. 101, 177–192 (2014).

    ADS 
    Article 

    Google Scholar 

  • Ammann, C., Jenny, B., Kammer, K. & Messerli, B. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 °S). Palaeogeogr. Palaeoclim. Palaeoecol. 172, 313–326 (2001).

    ADS 
    Article 

    Google Scholar 

  • Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Spötl, C. et al. Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps. Nat. Commun. 12, 1839 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Shumilovskikh, L. S. et al. Orbital and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments. Clim. Past 10, 939–954 (2014).

    Article 

    Google Scholar 

  • Wegwerth, A. et al. Black Sea temperature response to glacial millennial-scale climate variability. Geophys. Res. Lett. 42, 8147–8154 (2015).

    ADS 
    Article 

    Google Scholar 

  • Sarıkaya, M. A., Zreda, M., Çiner, A. & Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat. Sci. Rev. 27, 769–780 (2008).

    ADS 
    Article 

    Google Scholar 

  • Lézine, A.-M. et al. Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. Palaeogeogr. Palaeoclim. Palaeoecol. 287, 116–127 (2010).

    ADS 
    Article 

    Google Scholar 

  • Tecsa, V. et al. Revisiting the chronostratigraphy of late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quat. Int. 542, 65–79 (2020).

    Article 

    Google Scholar 

  • Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 6344 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ludwig, P., Schaffernicht, E. J., Shao, Y. & Pinto, J. G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res.-Atmos. 121, 2130–2145 (2016).

    ADS 
    Article 

    Google Scholar 

  • Schaffernicht, E. J., Ludwig, P. & Shao, Y. Linkage between dust cycle and loess of the last glacial maximum in Europe. Atmos. Chem. Phys. 20, 4969–4986 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beghin, P. et al. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Clim. Dyn. 46, 2611–2631 (2016).

    Article 

    Google Scholar 

  • Sümegi, P. et al. Vegetation and land snail-based reconstruction of the palaeocological changes in the forest steppe eco-region of the Carpathian Basin during last glacial warming. Glob. Ecol. Conserv. 33, e01976 (2022).

    Article 

    Google Scholar 

  • Chen, J. et al. Revisiting Late Pleistocene Loess-Paleosol sequences in the Azov Sea Region of Russia: Chronostratigraphy and paleoenvironmental record. Front. Earth Sci. 9, 808157 (2022).

    Article 

    Google Scholar 

  • Xepos, S. Analysis of trace elements in geological materials, soils and sludges. Spectro XRF Rep. 193, 1–5 (2007).

    Google Scholar 

  • Buggle, B. et al. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 27, 1058–1075 (2008).

    ADS 
    Article 

    Google Scholar 

  • Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System (Chi Publishing, 1999).

    Google Scholar 

  • Buylaert, J., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).

    CAS 
    Article 

    Google Scholar 

  • Lomax, J. et al. Establishing a luminescence-based chronostratigraphy for the Last Glacial-interglacial cycle of the Loess-Palaeosol sequence Achajur (Armenia). Front. Earth Sci. 9, 755084 (2021).

    Article 

    Google Scholar 

  • Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37, 493–498 (2003).

    CAS 
    Article 

    Google Scholar 

  • Tudyka, K. et al. Increased dose rate precision in combined α and β counting in the μDose system—A probabilistic approach to data analysis. Radiat. Meas. 134, 106310 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kolb, T. et al. The µDose-system: Determination of environmental dose rates by combined alpha and beta counting—Performance tests and practical experiences. GChron 4, 1–31 (2021).

    ADS 

    Google Scholar 

  • Durcan, J. A., King, G. & Duller, G. DRAC: Dose rate and age calculator for trapped charge dating. Quat. Geochron. 28, 54–61 (2015).

    Article 

    Google Scholar 

  • von Suchodoletz, H. & Faust, D. Late Quaternary fluvial dynamics and landscape evolution at the lower Shulaveris Ghele River (southern Caucasus). Quat. Res. 89, 254–269 (2018).

    Article 

    Google Scholar 

  • von Suchodoletz, H. et al. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering e the Kura River (southern Caucasus). Geomorphology 266, 53–65 (2016).

    ADS 
    Article 

    Google Scholar 

  • Ryan, W. B. F. et al. Global multi-resolution topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

    ADS 
    Article 

    Google Scholar 

  • Nalivkin, D. V. et al. Geologicheskaya Karta Kavkaza, Mashtav 1:500.000 (Geological Map of the Caucasus, Scale 1:500,000). (Ministry of Geology of the USSR, 1976).


  • Source: Ecology - nature.com

    Development of microsatellites markers for the deep coral Madracis myriaster (Pocilloporidae: Anthozoa)

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security