in

Reviewing the ecological impacts of offshore wind farms

  • International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).

  • United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).

  • Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).

  • Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).

    Article 

    Google Scholar 

  • Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).

  • Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).

    Article 

    Google Scholar 

  • IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).

  • Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).

    Article 

    Google Scholar 

  • IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).

  • European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).

  • European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).

  • European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).

  • Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).

    CAS 
    Article 

    Google Scholar 

  • Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).

    Article 

    Google Scholar 

  • WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).

  • Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).

    CAS 
    Article 

    Google Scholar 

  • Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).

    Article 

    Google Scholar 

  • Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).

  • Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).

    CAS 
    Article 

    Google Scholar 

  • Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).

    Article 

    Google Scholar 

  • Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).

    Article 

    Google Scholar 

  • Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).

    Article 

    Google Scholar 

  • Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).

    Article 

    Google Scholar 

  • Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).

    Article 

    Google Scholar 

  • van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).

    Article 

    Google Scholar 

  • De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).

    Article 
    CAS 

    Google Scholar 

  • Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).

    Article 

    Google Scholar 

  • Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).

    Article 

    Google Scholar 

  • Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).

    Article 

    Google Scholar 

  • Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).

    Article 

    Google Scholar 

  • Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).

    Article 

    Google Scholar 

  • Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).

    Article 

    Google Scholar 

  • Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    Article 

    Google Scholar 

  • Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).

    Article 

    Google Scholar 

  • Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).

    Article 
    CAS 

    Google Scholar 

  • Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).

    Article 

    Google Scholar 

  • Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).

  • Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).

    Article 

    Google Scholar 

  • Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).

  • Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).

    Article 

    Google Scholar 

  • Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).

    Article 

    Google Scholar 

  • Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).

    Article 

    Google Scholar 

  • Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).

    Article 

    Google Scholar 

  • Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).

  • Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).

    Article 

    Google Scholar 

  • Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).

    Article 

    Google Scholar 

  • Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).

    Article 

    Google Scholar 

  • Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).

    Article 

    Google Scholar 

  • Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).

    Article 

    Google Scholar 

  • Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).

    Article 

    Google Scholar 

  • Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).

    Article 

    Google Scholar 

  • van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).

    Article 
    CAS 

    Google Scholar 

  • Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).

    Article 

    Google Scholar 

  • Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).

  • Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).

  • Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).

    Article 

    Google Scholar 

  • Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).

    Article 

    Google Scholar 

  • Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).

    Article 

    Google Scholar 

  • Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).

    Article 

    Google Scholar 

  • Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).

    Article 

    Google Scholar 

  • Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).

    Article 

    Google Scholar 

  • Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).

    CAS 
    Article 

    Google Scholar 

  • Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).

    Article 

    Google Scholar 

  • Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).

    Article 

    Google Scholar 

  • Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).

    Article 

    Google Scholar 

  • Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).

    Article 

    Google Scholar 

  • Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).

    Article 

    Google Scholar 

  • Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).

    CAS 
    Article 

    Google Scholar 

  • Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).

    CAS 
    Article 

    Google Scholar 

  • Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).

    Article 

    Google Scholar 

  • Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).

    Article 

    Google Scholar 

  • Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).

    Article 

    Google Scholar 

  • Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).

    Article 

    Google Scholar 

  • Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).

    Article 

    Google Scholar 

  • Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).

    Article 

    Google Scholar 

  • Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).

    Article 

    Google Scholar 

  • Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).

  • Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).

    Article 

    Google Scholar 

  • Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).

    Article 

    Google Scholar 

  • Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).

    Article 

    Google Scholar 

  • Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).

    Article 

    Google Scholar 

  • Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).

    Article 

    Google Scholar 

  • European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).

  • O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).

    Article 

    Google Scholar 

  • Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).

    Article 

    Google Scholar 

  • Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).

    Article 
    CAS 

    Google Scholar 

  • Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).

    Article 

    Google Scholar 

  • Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).

    Article 

    Google Scholar 

  • Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).

    Article 

    Google Scholar 

  • Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).

    Article 

    Google Scholar 

  • Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).

    Article 

    Google Scholar 

  • Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).

    Article 

    Google Scholar 

  • Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).

  • Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).

    Article 

    Google Scholar 

  • Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).

  • Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).

    Article 
    CAS 

    Google Scholar 

  • Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).

    CAS 
    Article 

    Google Scholar 

  • Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).

  • Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).

    Article 

    Google Scholar 

  • Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).

    Article 

    Google Scholar 

  • González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).

    Article 

    Google Scholar 

  • Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).

    Article 

    Google Scholar 

  • Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Solving a longstanding conundrum in heat transfer

    Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds