Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).
Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2019).
Gardner, J. L. et al. Australian songbird body size tracks climate variation: 82 species over 50 years. Proc. R. Soc. B 286, 20192258 (2019).
McNab, B. K. Extreme Measures: The Ecological Energetics of Birds and Mammals (Univ. of Chicago Press, 2012).
West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).
Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138 (2013).
Shipley, J. R. et al. Climate change shifts the timing of nutritional flux from aquatic insects. Curr. Biol. (2022).
Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. London B 363, 1635–1645 (2008).
Conway, C. J. & Martin, T. E. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54, 670–685 (2000).
Google Scholar
Martin, T. E., Tobalske, B., Riordan, M. M., Case, S. B. & Dial, K. P. Age and performance at fledging are a cause and consequence of juvenile mortality between life stages. Sci. Adv. 4, eaar1988 (2018).
Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
Cox, A. R., Robertson, R. J., Fedy, B. C., Rendell, W. B., & Bonier, F. Demographic drivers of local population decline in tree swallows (Tachycineta bicolor) in Ontario, Canada. Condor Ornithol. Appl. 120, 842–851 (2018).
Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
Karasov, W. H. & del Rio, C. M. Physiological Ecology (Princeton Univ. Press, 2007).
Ricklefs, R. The energetics of reproduction in birds. Avian Energetics 15, 152–297 (1974).
Mainwaring, M. C. & Hartley, I. R. The energetic costs of nest building in birds. Avian Biol. Res. 6, 12–17 (2013).
Williams, J. B. Energetics of Avian Incuation. in Avian Energetics and Nutritional Ecology (ed Carey, C.) 375–415 (Springer, Boston, 1996).
Williams, T. D. Mechanisms underlying the costs of egg production. Bioscience 55, 39–48 (2005).
Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).
Google Scholar
Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).
Andrew, S., Hurley, L., Mariette, M. & Griffith, S. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).
Google Scholar
Andreasson, F., Nord, A. & Nilsson, J.-Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49 https://doi.org/10.1111/jav.01620 (2018).
Nilsson, J. F., Stjernman, M. & Nilsson, J. Å. Experimental reduction of incubation temperature affects both nestling and adult blue tits Cyanistes caeruleus. J. Avian Biol. 39, 553–559 (2008).
Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.2138 (2010).
Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B 282, 20150624 (2015).
Shipley, J. R. et al. Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc. Natl Acad. Sci. USA (2020).
Robinson, R. A., Baillie, S. R. & Crick, H. Q. Weather‐dependent survival: implications of climate change for passerine population processes. Ibis 149, 357–364 (2007).
Winkler, D. W. et al. Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows. Ecology (2020).
Twining, C. W., Shipley, J. R. & Winkler, D. W. Aquatic insects rich in omega‐3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21, 1812–1820 (2018).
Millet, A., Pelletier, F., Bélisle, M. & Garant, D. Patterns of fluctuating selection on morphological and reproductive traits in female tree swallow (Tachycineta bicolor). Evolut. Biol. 42, 349–358 (2015).
Bitton, P.-P., O’Brien, E. L. & Dawson, R. D. Plumage brightness and age predict extrapair fertilization success of male tree swallows, Tachycineta bicolor. Anim. Behav. 74, 1777–1784 (2007).
Whittingham, L. A. & Dunn, P. O. Experimental evidence that brighter males sire more extra‐pair young in tree swallows. Mol. Ecol. 25, 3706–3715 (2016).
Kempenaers, B., Everding, S., Bishop, C., Boag, P. & Robertson, R. J. Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 49, 251–259 (2001).
Lessard, A., Bourret, A., Bélisle, M., Pelletier, F. & Garant, D. Individual and environmental determinants of reproductive success in male tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 68, 733–742 (2014).
Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).
Williams, H. J. et al. Future trends in measuring physiology in free-living animals. Philos. Trans. R. Soc. B 376, 20200230 (2021).
Google Scholar
Twining, C. W. et al. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc. Natl Acad. Sci. (2016).
Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
Chamberlain, S., Hocking, D. & Anderson, B. rnoaa: NOAA Weather Data from R. R version 1.3.8 http://cran.auckland.ac.nz/web/packages/rnoaa/rnoaa.pdf (2021).
Cumbie-Ward, R. V. & Boyles, R. P. Evaluation of a high-resolution SPI for monitoring local drought severity. J. Appl. Meteorol. Climatol. 55, 2247–2262 (2016).
Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA J. Am. Water Resour. Assoc. 35, 311–322 (1999).
Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R version 3 (2017).
Canty, A. & Ripley, B. Package ‘boot’. Bootstrap Funct. Ver. 1, 3–20 (2017).
Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Software 67, 1–48 (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Software 82, 1–26 (2017).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).
Allaire, J. et al. rmarkdown: Dynamic Documents for R. R version 1 (2018).
Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
Boyle, W. A., Winkler, D. W. & Guglielmo, C. G. Rapid loss of fat but not lean mass prior to chick provisioning supports the flight efficiency hypothesis in tree swallows. Funct. Ecol. 26, 895–903 (2012).
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R version 0.2 4 (2019).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Arnqvist, G. Mixed models offer no freedom from degrees of freedom. Trends Ecol. Evol. (2020).
Source: Ecology - nature.com