in

Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation

  • Eda, M. Origin of the domestic chicken from modern biological and zooarchaeological approaches. Anim. Front. 11, 52–61 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • FAO. Status And Trends Of Animal Genetic Resources (Commission on genetic resources for food agriculture, Rome, 2019).

  • Chen, G., Wang, K., Wang, J., Ding, C. & Yang, N. Poultry Genetic Resources in China (Shanghai Scientific and Technological Press, Shanghai, 2004).

  • Wang, M. S. et al. Genomic analyses reveal potential independent adaptation to high altitude in tibetan chickens. Mol. Biol. Evol. 32, 1880–1889 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. et al. Genome resequencing identifies unique adaptations of tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biol. Evol. 8, 765–776 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H., Wang, X. T., Chamba, Y., Ling, Y. & Wu, C. X. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult. Sci. 87, 2112–2116 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Jia, C. L., He, L. J., Li, P. C., Liu, H. Y. & Wei, Z. H. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude. Poult. Sci. 95, 1660–1665 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hillier, L. W. et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004).

    CAS 

    Google Scholar 

  • Rubin, C. J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. S. et al. An evolutionary genomic perspective on the breeding of dwarf chickens. Mol. Biol. Evol. 34, 3081–3088 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, Y. et al. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 19, 128 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet 18, 563–575 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, J. et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 20, 243 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoglund, A. et al. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat. Ecol. Evol. 4, 1713–1724 (2020).

    PubMed 

    Google Scholar 

  • Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Gou, W., Ma, J. & Zhang, H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. PeerJ 5, e3891 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, E. J. Inherited epigenetic variation–revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Kawakatsu, T. et al. Epigenomic diversity in a global collection of arabidopsis thaliana accessions. Cell 166, 492–505 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. Whole-genome methylation analysis reveals epigenetic variation in cloned and donor pigs. Front. Genet. 11, 23 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics. 19, 598 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K. & Allendorf, F. W. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv. Genet. 11, 355–373 (2010).

    CAS 

    Google Scholar 

  • Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mussmann, S. M. et al. Genetic rescue, the greater prairie chicken and the problem of conservation reliance in the Anthropocene. R. Soc. Open Sci. 4, 160736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banks, S. C. et al. How does ecological disturbance influence genetic diversity? Trends Ecol. Evol. 28, 670–679 (2013).

    PubMed 

    Google Scholar 

  • Bjornstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nat. Commun. 9, 2648 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forcada, J. & Hoffman, J. I. Climate change selects for heterozygosity in a declining fur seal population. Nature 511, 462–465 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, D. et al. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat. Commun. 9, 4991 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X. et al. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol. Biol. Evol. 33, 2670–2681 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, X. J. et al. The genome landscape of tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the qinghai-tibetan plateau. Mol. Biol. Evol. 36, 283–303 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, G. D. et al. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl Acad. Sci. USA 115, E5056–E5065 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xin, J. et al. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat. Commun. 11, 4928 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).

    PubMed 

    Google Scholar 

  • Wang, M. S. et al. Ancient Hybridization with an unknown population facilitated high-altitude adaptation of Canids. Mol. Biol. Evol. 37, 2616–2629 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Vargas, J. D. et al. Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys. Acta 1651, 116–123 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Rattner, A., Smallwood, P. M. & Nathans, J. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem. 275, 11034–11043 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Amengual, J. et al. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J. 25, 948–959 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase A-dependent inhibition of GSK-3beta. J. Biol. Chem. 277, 36955–36961 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Manabe, R. et al. Transcriptome-based systematic identification of extracellular matrix proteins. Proc. Natl Acad. Sci. USA 105, 12849–12854 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, X. et al. NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett. 585, 2410–2418 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luan, X. et al. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 189, 245–252 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Yoshimura, S-i., Gerondopoulo, A., Linford, A., Rigden, D. J. & Barr, F. A. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, L. J. et al. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124, 611–623 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Shimizu, S. et al. Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells. J. Physiol. 570, 219–235 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Foxler, D. E. et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat. Cell Biol. 14, 201–208 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4, e05255–e05255 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet. 9, 883–890 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watson, J. A., Watson, C. J., McCann, A. & Baugh, J. Epigenetics, the epicenter of the hypoxic response. Epigenetics 5, 293–296 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Guerrero-Bosagna, C. From epigenotype to new genotypes: relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin. Cell Dev. Biol. 97, 86–92 (2020).

    PubMed 

    Google Scholar 

  • Furey, T. S. & Sethupathy, P. Genetics. Genetics driving epigenetics. Science 342, 705–706 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Shimoda, L. A. & Undem, C. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir. Physiol. Neurobiol. 174, 221–229 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodman, D. M. et al. Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ. Res. 96, 864–872 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hui, A. S., Bauer, A. L., Striet, J. B., Schnell, P. O. & Czyzyk-Krzeska, M. F. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J. 20, 466–475 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Mottet, D. et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J. Cell Physiol. 194, 30–44 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Qi, H. et al. Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia. Cell Physiol. Biochem. 27, 251–262 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Pandey, P., Mohammad, G., Singh, Y. & Qadar Pasha, M. A. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation. Appl. Clin. Genet. 8, 257–267 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Gou, W., Zhang, Y., Zhang, H. & Wu, C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp. Biochem Physiol. Part D. Genomics Proteomics 31, 100602 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, T. S. et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39, 227–239 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mariani, C. J. et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 7, 1343–1352 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsai, Y. P. et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol. 15, 513 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, S. et al. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J. Biol. Chem. 295, 16299–16313 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schultz, M. D., Schmitz, R. J. & Ecker, J. R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, D. et al. MOABS: model based analysis of bisulfite sequencing data. Genome Biol. 15, R38 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series

    3Q: How MIT is working to reduce carbon emissions on our campus