in

Tree species matter for forest microclimate regulation during the drought year 2018: disentangling environmental drivers and biotic drivers

  • Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392. https://doi.org/10.1126/sciadv.1501392 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E. & Abatzoglou, J. T. Microclimatic buffering in forests of the future: The role of local water balance. Ecography 42, 1–11 (2019).

    Article 

    Google Scholar 

  • de Frenne, P. et al. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456 (2017).

    Article 
    ADS 

    Google Scholar 

  • Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build. Environ. 114, 118–128 (2017).

    Article 

    Google Scholar 

  • Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manag. 432, 860–867 (2019).

    Article 

    Google Scholar 

  • Richter, R., Hutengs, C., Wirth, C., Bannehr, L. & Vohland, M. Detecting tree species effects on forest canopy temperatures with thermal remote sensing: The role of spatial resolution. Remote Sens. 13, 135. https://doi.org/10.3390/rs13010135 (2021).

    Article 
    ADS 

    Google Scholar 

  • IPCC. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In Press, 2021).

  • Rahman, M. A. et al. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).

    Article 

    Google Scholar 

  • Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst. 22, 683–697 (2019).

    Article 

    Google Scholar 

  • Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindo, Z. & Winchester, N. Out on a limb: microarthropod and microclimate variation in coastal temperate rainforest canopies. Insect Conserv. Divers. 6, 513–521 (2013).

    Article 

    Google Scholar 

  • Pincebourde, S., Murdock, C. C., Vickers, M. & Sears, M. W. Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. 56, 45–61 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Janssen, P., Fuhr, M. & Bouget, C. Beyond forest habitat qualities: Climate and tree characteristics as the major drivers of epiphytic macrolichen assemblages in temperate mountains. J. Veg. Sci. 30, 42–54 (2019).

    Article 

    Google Scholar 

  • Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).

    Article 

    Google Scholar 

  • Lin, Y.-S., Medlyn, B. E. & Ellsworth, D. S. Temperature responses of leaf net photosynthesis: The role of component processes. Tree Physiol. 32, 219–231 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, H. et al. Modeling transpiration and leaf temperature of urban trees: A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40 (2018).

    Article 

    Google Scholar 

  • Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3, 2711–2729 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichenberg, D. et al. The effect of microclimate on wood decay is indirectly altered by tree species diversity in a litterbag study. J. Plant Ecol. 10, 170–178 (2017).

    Article 

    Google Scholar 

  • Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 26, 3005–3035 (2017).

    Article 

    Google Scholar 

  • Martínez Pastur, G., Perera, A. H., Peterson, U. & Iverson, L. R. In Ecosystem Services from Forest Landscapes (eds Perera, A. H. et al.) 1–10 (Springer International Publishing, 2018).

    Google Scholar 

  • Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).

    Article 

    Google Scholar 

  • Shashua-Bar, L., Tsiros, I. X. & Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 57, 110–119 (2012).

    Article 

    Google Scholar 

  • Song, J. & Wang, Z.-H. Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Build. Environ. 94, 558–568 (2015).

    Article 

    Google Scholar 

  • Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).

    Article 
    ADS 

    Google Scholar 

  • Pfleiderer, P., Schleussner, C.-F., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 °C world. Nat. Clim. Change 9, 666–671 (2019).

    Article 
    ADS 

    Google Scholar 

  • Selten, F. M., Bintanja, R., Vautard, R. & van den Hurk, B. J. J. M. Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology. Sci. Rep. 10, 4721. https://doi.org/10.1038/s41598-020-61721-9 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J. & Leitgeb, E. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. For. Ecol. Manag. 258, 590–599 (2009).

    Article 

    Google Scholar 

  • Speak, A., Montagnani, L., Wellstein, C. & Zerbe, S. The influence of tree traits on urban ground surface shade cooling. Landsc. Urban Plan. 197, 103748. https://doi.org/10.1016/j.landurbplan.2020.103748 (2020).

    Article 

    Google Scholar 

  • Rahman, M. A., Armson, D. & Ennos, A. R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 18, 371–389 (2015).

    Article 

    Google Scholar 

  • Bowden, J. D. & Bauerle, W. L. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods. Tree Physiol. 28, 1675–1683 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Panferov, O. et al. The role of canopy structure in the spectral variation of transmission and absorption of solar radiation in vegetation canopies. IEEE Trans. Geosci. Remote Sens. 39, 241–253 (2001).

    Article 
    ADS 

    Google Scholar 

  • Lin, H., Chen, Y., Zhang, H., Fu, P. & Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 31, 2202–2211 (2017).

    Article 

    Google Scholar 

  • Fauset, S. et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant Cell Environ. 41, 1618–1631 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PloS ONE 7, e47882. https://doi.org/10.1371/journal.pone.0047882 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallego, H. A., Rico, M., Moreno, G. & Santa Regina, I. Leaf water potential and stomatal conductance in Quercus pyrenaica Willd. forests: Vertical gradients and response to environmental factors. Tree Physiol. 14, 1039–1047 (1994).

    Article 
    PubMed 

    Google Scholar 

  • Hölscher, D., Koch, O., Korn, S. & Leuschner, C. Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees 19, 628–637 (2005).

    Article 

    Google Scholar 

  • Li, S. et al. Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiol. 36, 179–192 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Schnabel, F. et al. Cumulative growth and stress responses to the 2018–2019 drought in a European floodplain forest. Glob. Change Biol. 28, 1870–1883 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sastry, A., Guha, A. & Barua, D. Leaf thermotolerance in dry tropical forest tree species: Relationships with leaf traits and effects of drought. AoB Plants 10, plx070. https://doi.org/10.1093/aobpla/plx070 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Banerjee, T. & Linn, R. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation. Forests 9, 198. https://doi.org/10.3390/f9040198 (2018).

    Article 

    Google Scholar 

  • Leuzinger, S. & Körner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. For. Meteorol. 146, 29–37 (2007).

    Article 
    ADS 

    Google Scholar 

  • Yi, K. et al. High heterogeneity in canopy temperature among co-occurring tree species in a temperate forest. J. Geophys. Res. Biogeosci. 125, e05892. https://doi.org/10.1029/2020JG005892 (2020).

    Article 

    Google Scholar 

  • Hagemeier, M. & Leuschner, C. Functional crown architecture of five temperate broadleaf tree species: Vertical gradients in leaf morphology, leaf angle, and leaf area density. Forests 10, 265. https://doi.org/10.3390/f10030265 (2019).

    Article 

    Google Scholar 

  • Raabe, K., Pisek, J., Sonnentag, O. & Annuk, K. Variations of leaf inclination angle distribution with height over the growing season and light exposure for eight broadleaf tree species. Agric. For. Meteor. 214–215, 2–11 (2015).

    Article 

    Google Scholar 

  • Kafuti, C. et al. Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest. Forests 11, 35. https://doi.org/10.3390/f11010035 (2020).

    Article 

    Google Scholar 

  • Peiffer, M., Bréda, N., Badeau, V. & Granier, A. Disturbances in European beech water relation during an extreme drought. Ann. For. Sci. 71, 821–829 (2014).

    Article 

    Google Scholar 

  • Stratópoulos, L. M. F. et al. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int. J. Biometeorol. 63, 197–208 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • McGloin, R. et al. Available energy partitioning during drought at two Norway spruce forests and a European beech forest in Central Europe. J. Geophys. Res. Atmos. 124, 3726–3742 (2019).

    Article 
    ADS 

    Google Scholar 

  • Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153. https://doi.org/10.1038/s41598-020-71055-1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 10, 12207. https://doi.org/10.1038/s41598-020-68872-9 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyon, T. L., Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn. (Pearson, 2017).

    Google Scholar 

  • Zweifel, R., Böhm, J. P. & Häsler, R. Midday stomatal closure in Norway spruce—reactions in the upper and lower crown. Tree Physiol. 22, 1125–1136 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 633, 100–111 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).

    Article 

    Google Scholar 

  • Hochberg, U., Rockwell, F. E., Holbrook, N. M. & Cochard, H. Iso/anisohydry: A plant-environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 23, 112–120 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leuschner, C., Wedde, P. & Lübbe, T. The relation between pressure–volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Ann. For. Sci. 76, 60. https://doi.org/10.1007/s13595-019-0838-7 (2019).

    Article 

    Google Scholar 

  • Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecol. Lett. 15, 393–405 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hartmann, H., Link, R. M. & Schuldt, B. A whole-plant perspective of isohydry: Stem-level support for leaf-level plant water regulation. Tree Physiol. 41, 901–905 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alonso-Forn, D. et al. Revisiting the functional basis of sclerophylly within the leaf economics spectrum of oaks: Different roads to Rome. Curr. For. Rep. 6, 260–281 (2020).

    Google Scholar 

  • Hirons, A. D. & Thomas, P. A. Applied Tree Biology (John Wiley & Sons Ltd, 2017).

    Book 

    Google Scholar 

  • Richter, R., Reu, B., Wirth, C., Doktor, D. & Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 52, 464–474 (2016).

    ADS 

    Google Scholar 

  • Qiu, G. et al. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 12, 1307–1315 (2013).

    Article 

    Google Scholar 

  • Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384 (2012).

    Article 
    ADS 

    Google Scholar 

  • Landsberg, J. J. & James, G. B. Wind profiles in plant canopies: Studies on an analytical model. J. Appl. Ecol. 8, 729–741 (1971).

    Article 

    Google Scholar 

  • Gromke, C. & Ruck, B. Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry 81, 243–258 (2008).

    Article 

    Google Scholar 

  • Baldocchi, D. D. Turbulent transfer in a deciduous forest. Tree Physiol. 5, 357–377 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Derby, R. W. & Gates, D. M. The temperature of tree trunks—Calculated and observed. Am. J. Bot. 53, 580–587 (1966).

    Google Scholar 

  • Jayalakshmy, M. S. & Philip, J. Thermophysical properties of plant leaves and their influence on the environment temperature. Int. J. Thermophys. 31, 2295–2304 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pieruschka, R., Huber, G. & Berry, J. A. Control of transpiration by radiation. Proc. Natl. Acad. Sci. U.S.A. 107, 13372–13377 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meili, N. et al. Tree effects on urban microclimate: Diurnal, seasonal, and climatic temperature differences explained by separating radiation, evapotranspiration, and roughness effects. Urban For. Urban Green. 58, 126970. https://doi.org/10.1016/j.ufug.2020.126970 (2021).

    Article 

    Google Scholar 

  • Oogathoo, S., Houle, D., Duchesne, L. & Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 291, 108063. https://doi.org/10.1016/j.agrformet.2020.108063 (2020).

    Article 
    ADS 

    Google Scholar 

  • Betts, M. G., Phalan, B., Frey, S. J. K., Rousseau, J. S. & Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 24, 439–447 (2018).

    Article 

    Google Scholar 

  • Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. For. Rep. 4, 35–50 (2018).

    Google Scholar 

  • de Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article 
    ADS 

    Google Scholar 

  • Woods, C. L., Cardelús, C. L. & DeWalt, S. J. Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J. Ecol. 103, 421–430 (2015).

    Article 

    Google Scholar 

  • Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).

    Article 
    PubMed 

    Google Scholar 

  • European State of the Climate 2020, Copernicus Climate Change Service, Full report: climate.copernicus.eu/ESOTC/2020

  • Munzi, S. et al. Lichens as ecological indicators in urban areas: beyond the effects of pollutants. J. Appl. Ecol. 51, 1750–1757 (2014).

    Article 

    Google Scholar 

  • Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).

    Article 
    ADS 

    Google Scholar 

  • Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Merinero, S., Dahlberg, C. J., Ehrlén, J. & Hylander, K. Intraspecific variation influences performance of moss transplants along microclimate gradients. Ecology 101, e02999. https://doi.org/10.1002/ecy.2999 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ben-Yakir, D. & Fereres, A. The effects of UV radiation on arthropods: A review of recent publications (2010–2015). Acta Hortic. 1134, 335–342 (2016).

  • Vanhaelewyn, L., van der Straeten, D., de Coninck, B. & Vandenbussche, F. Ultraviolet radiation from a plant perspective: The plant-microorganism context. Front. Plant Sci. 11, 597642. https://doi.org/10.3389/fpls.2020.597642 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen, E. Das Naturschutzgebiet Burgaue; Staatliches Umweltfachamt: Leipzig, Germany (1999).

  • Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LFULG) & DWD Deutscher Wetterdienst (2019) [ed.]: 2018 Wetter trifft auf Klima. Dresden, Leipzig. https://www.klima.sachsen.de/download/Jahresrueckblick2018_A5_OeA.pdf.

  • Haase, D. & Gläser, J. Determinants of floodplain forest development illustrated by the example of the floodplain forest in the District of Leipzig. For. Ecol. Manag. 258, 887–894 (2009).

    Article 

    Google Scholar 

  • Patzak, R., Richter, R., Engelmann, R. A. & Wirth, C. Tree crowns as meeting points of diversity generating mechanisms: A test with epiphytic lichens in a temperate forest. Preprint at: https://www.biorxiv.org/content/https://doi.org/10.1101/2020.01.03.894303v1.full (2020).

  • Meinen, C., Leuschner, C., Ryan, N. T. & Hertel, D. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23, 941–950 (2009).

    Article 

    Google Scholar 

  • van der Zande, D., Stuckens, J., Verstraeten, W. W., Muys, B. & Coppin, P. Assessment of light environment variability in broadleaved forest canopies using terrestrial laser scanning. Remote Sens. 2, 1564–1574. https://doi.org/10.3390/rs2061564 (2010).

    Article 
    ADS 

    Google Scholar 

  • Köstner, B., Granier, A. & Cermák, J. Sapflow measurements in forest stands: Methods and uncertainties. Ann. For. Sci. 55, 13–27 (1998).

    Article 

    Google Scholar 

  • Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Metzger, J. M. & Oren, R. The effect of crown dimension on transparency and the assessment of tree health. Ecol. Appl. 11, 1634–1640 (2001).

    Article 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1-151, https://CRAN.R-project.org/package=nlme.

  • Dornelas, M. et al. Quantifying temporal change in biodiversity: Challenges and opportunities. Proc. Biol. Sci. 280, 20121931. https://doi.org/10.1098/rspb.2012.1931 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.


  • Source: Ecology - nature.com

    Spatial assortment of soil organisms supports the size-plasticity hypothesis

    “Drawing Together” is awarded Norman B. Leventhal City Prize