in

High-yield dairy cattle breeds improve farmer incomes, curtail greenhouse gas emissions and reduce dairy import dependency in Tanzania

  • Meat, Milk and More: Policy Innovations to Shepherd Inclusive and Sustainable Livestock Systems in Africa (Malabo Montpellier Panel, 2020).

  • Value of Agricultural Production (FAO, accessed August 25, 2022); https://www.fao.org/faostat/en/#data/QV

  • Jayne, T. & Sanchez, P. A. Agricultural productivity must improve in sub-Saharan Africa. Science 372, 1045–1047 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dangal, S. R. S. et al. Methane emission from global livestock sector during 1890–2014: magnitude, trends and spatiotemporal patterns. Glob. Change Biol. 23, 4147–4161 (2017).

    Article 
    ADS 

    Google Scholar 

  • Mottet, A. et al. Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg. Env. Change 17, 129–141 (2016).

    Article 

    Google Scholar 

  • Valin, H. et al. Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • González-Quintero, R. et al. Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia. Agric. Syst. 195, 103303 (2022).

    Article 

    Google Scholar 

  • Crops and Livestock Products (FAO, accessed August 17,2022); https://www.fao.org/faostat/en/#data/QCL

  • Ledo, J. et al. Persistent challenges in safety and hygiene control practices in emerging dairy chains: the case of Tanzania. Food Control 105, 164–173 (2019).

    Article 

    Google Scholar 

  • Häsler, B. et al. Integrated food safety and nutrition assessments in the dairy cattle value chain in Tanzania. Glob. Food Sec. 18, 102–113 (2018).

    Article 

    Google Scholar 

  • Supply Utilization Accounts (FAO, accessed August 26, 2022); https://www.fao.org/faostat/en/#data/SCL

  • Michael, S. et al. Tanzania Livestock Master Plan (International Livestock Research Institute, 2018).

  • Tanzania Livestock Sector Analysis (2016/2017–2030/2031) (United Republic of Tanzania Ministry of Livestock and Fisheries, 2017); https://www.mifugouvuvi.go.tz/uploads/projects/1553602287-LIVESTOCK%20SECTOR%20ANALYSIS.pdf

  • Nicholson, C. et al. Assessment of Investment Priorities for Tanzania’s Dairy Sector: Report on Activities and Accomplishments (International Livestock Research Institute, 2021).

  • Chagunda, M. G. C., Romer, D. A. M. & Roberts, D. J. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livest. Sci. 122, 323–332 (2009).

    Article 

    Google Scholar 

  • Notenbaert, A. et al. Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Reg. Environ. Change 20, 138 (2020).

  • Yesuf, G. A. et al. Embedding stakeholders’ priorities into the low-emission development of the East African dairy sector. Env. Res. Lett. 16, 064032 (2021).

    Article 
    CAS 

    Google Scholar 

  • GLS (Greening Livestock Survey) (International Livestock Research Institute, 2019); https://data.ilri.org/portal/dataset/greeninglivestock

  • Intended Nationally Determined Contributions (United Republic of Tanzania, 2021); https://unfccc.int/sites/default/files/NDC/2022-06/TANZANIA_NDC_SUBMISSION_30%20JULY%202021.pdf

  • Ndung’u, P. W. et al. Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicusB. taurus crosses) production systems in highlands and semi-arid regions. Animal 16, 100445 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Goopy, J. P. et al. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br. J. Nutr. 123, 1239–1246 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goopy, J. P. et al. A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa—results for Nyando, Western Kenya. Agric. Syst. 161, 72–80 (2018).

    Article 

    Google Scholar 

  • Supporting Low Emissions Development in the Tanzanian Dairy Cattle Sector—Reducing Enteric Methane for Food Security and Livelihoods (FAO, 2019).

  • Gerssen-Gondelach, S. J. et al. Intensification pathways for beef and dairy cattle production systems: impacts on GHG emissions, land occupation and land use change. Agric. Ecosyst. Environ. 240, 135–147 (2017).

    Article 

    Google Scholar 

  • Havlik, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article 
    ADS 

    Google Scholar 

  • Dizyee, K., Baker, D. & Omore, A. Upgrading the smallholder dairy value chain: a system dynamics ex-ante impact assessment in Tanzania’s Kilosa district. J. Dairy Res. 86, 440–449 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simões, A. R. P., Nicholson, C. F., Novakovicc, A. M. & Protil, R. M. Dynamic impacts of farm-level technology adoption on the Brazilian dairy supply chain. Int. Food Agribus. Manag. Rev. 23, 71–84 (2020).

    Article 

    Google Scholar 

  • Rahimi, J. et al. Heat stress will detrimentally impact future livestock production in East Africa. Nat. Food. 2, 88–96 (2021).

    Article 

    Google Scholar 

  • Mbululo, Y. & Nyihirani, F. Climate characteristics over southern highlands Tanzania. Atmos. Clim. Sci. 2, 454–463 (2012).

    Google Scholar 

  • Kihoro, E. M., Schoneveld, G. C. & Crane, T. A. Pathways toward inclusive low-emission dairy development in Tanzania: producer heterogeneity and implications for intervention design. Agric. Syst. 190, 103073 (2021).

  • Mruttu, H. et al. Animal Genetics Strategy and Vision for Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).

  • Agricultural Sample Survey 2018/19 Report on Livestock and Livestock Characteristics (Private Peasant Holdings) (Central Statistical Agency, 2019).

  • 2019/20 National Sample Census of Agriculture Main Report (Tanzania National Bureau of Statistics, 2022).

  • Robinson, T. P. et al. Global Livestock Production Systems (FAO, 2011).

  • Herrero, M. et al. Biomass use, production, feed efficiencies and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baseline Study of the Tanzania Dairy Value Chain (United Republic of Tanzania Ministry of Agriculture, Livestock and Fisheries, 2016).

  • Mbwambo, N., Nandonde, S., Ndomba, C. & Desta, S. Assessment of Animal Feed Resources in Tanzania (Tanzania Ministry of Agriculture, Livestock and Fisheries and ILRI, 2016).

  • Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., & Borriello, G. Open data kit: tools to build information services for developing regions. Proc. 4th ACM/IEEE International Conference on Information and Communication Technologies and Development (Association for Computing Machinery, 2010).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).https://www.r-project.org

  • Rufino, M. C. et al. Lifetime productivity of dairy cows in smallholder farming systems of the central highlands of Kenya. Animal 3, 1044–1056 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hawkins, J. et al. Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector. Sci. Rep. 11, 4190 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Python Software Foundation (Python Software Foundation, 2019); https://www.python.org/psf/

  • Kashoma, I. P. B. et al. Predicting body weight of Tanzania shorthorn zebu cattle using heart girth measurements. Livest. Res. Rural. Dev. 23, Table 1 (2011).

  • Galukande, E. B., Mahadevan, P. & Black, J. G. Milk production in East African zebu cattle. Anim. Sci. 4, 329–336 (1962).

    Article 

    Google Scholar 

  • Gillah, K. A., Kifaro, G. C. & Madsen, J. Effects of pre partum supplementation on milk yield, reproduction and milk quality of crossbred dairy cows raised in a peri urban farm of Morogoro town Tanzania. Livest. Res. Rural. Dev. 26 (2014).

  • Njau, F. B. C., Lwelamira, J. & Hyandye, C. Ruminant livestock production and quality of pastures in the communal grazing land of semi-arid central Tanzania. Livest. Res. Rural. Dev. 8, Table 4 (2013).

  • Mwambene, P. L. et al. Selecting indigenous cattle populations for improving dairy production in the Southern Highlands and Eastern Tanzania. Livest. Res. Rural. Dev. 26 (2014).

  • Rege, J. E. O. et al. Cattle of Kenya: Uses, Performance, Farmer Preferences, Measures of Genetic Diversity and Options for Improved Use (International Livestock Research Institute, 2001).

  • Beffa, L. M. Genotype × Environment Interaction in Afrikaner Cattle. PhD thesis, Univ. of the Free State (2005).

  • Meaker, H. J., Coetsee, T. P. N. & Lishman, A. W. The effects of age at 1st calving on the productive and reproductive-performance of beef-cows. S. Afr. J. Anim. Sci. 10, 105–113 (1980).

    Google Scholar 

  • Chenyambuga, S. W. & Mseleko, K. F. Reproductive and lactation performances of Ayrshire and Boran crossbred cattle kept in smallholder farms in Mufindi district, Tanzania. Livest. Res. Rural. Dev. 21, 100 (2009).

    Google Scholar 

  • Ojango, J. M. K. et al. Dairy production systems and the adoption of genetic and breeding technologies in Tanzania, Kenya, India and Nicaragua. Anim. Genet. Resour. 59, 81–95 (2016).

    Article 

    Google Scholar 

  • Feedipedia—Animal Feed Resources Information System (FAO, accessed 2021); https://www.feedipedia.org/

  • Lukuyu, B. et al. (eds) Feeding Dairy Cattle in East Africa (East Africa Dairy Development Project, 2012).

  • Rubanza, C. D. K. et al. Biomass production and nutritive potential of conserved forages in silvopastoral traditional fodder banks (Ngitiri) of Meatu District of Tanzania. Asian-Aust. J. Anim. Sci. 19, 978–983 (2006).

    Article 

    Google Scholar 

  • Food Balances (2010-) (FAO, accessed September 29, 2021); http://www.fao.org/faostat/en/#data/FBS

  • Crop Data for the United Republic of Tanzania (FAO, accessed September 22, 2021); http://www.fao.org/faost at/en/#data/QC

  • Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data. 5, 180227 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2014/15 Annual Agricultural Sample Survey Report (The United Republic of Tanzania, 2016).

  • Basic Data for Livestock and Fisheries (The United Republic of Tanzania Ministry of Livestock and Fisheries, 2013).

  • IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 Agriculture, Forestry and Other Land Use (IPCC, 2006).

  • 2019 Refinement to the IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2019).

  • Fertilizers by Nutrient (FAO, accessed July 6, 2022); https://www.fao.org/faostat/en/#data/RFN

  • Hutton, M. O. et al. Toward a nitrogen footprint calculator for Tanzania. Env. Res. Lett. 12, 034016 (2017).

    Article 

    Google Scholar 

  • Tanzania Fertilizer Assessment (International Fertilizer Development Center, 2012); http://tanzania.countrystat.org/fileadmin/user_upload/countrystat_fenix/congo/docs/Tanzania%20Fertilizer%20Assessment%202012.pdf

  • A Common Carbon Footprint Approach for the Dairy Sector: The IDF Guide to Standard Life Cycle Methodology (International Dairy Federation, 2015); https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdf

  • Bruzzone, L., Bovolo, F. & Arino, O. European Space Agency land cover climate change initiative. ESA LC CCI data: high resolution land cover data via Centre for Environmental Data Analysis; https://climate.esa.int/en/projects/high-resolution-land-cover/ (2021)

  • Characteristics of Markets for Animal Feeds Raw Materials in the East African Community: Focus on Maize Bran and Sunflower Seed Cake (Kilimo Trust, 2017).

  • Ngunga, D. & Mwendia, S. Forage Seed System in Tanzania: A Review Report (Alliance of Biodiversity and CIAT, 2020).

  • Nkombe, B.M. Investigation of the Potential for Forage Species to Enhance the Sustainability of Degraded Rangeland and Cropland Soils. MSc thesis, Ohio State Univ. (2016).

  • Producer Prices (FAO, accessed 2021); http://www.fao.org/faostat/en/#data/PP


  • Source: Ecology - nature.com

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19