in

Statistical optimization of a sustainable fertilizer composition based on black soldier fly larvae as source of nitrogen

  • United Nations. [World population prospects 2019]. United Nations. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).

  • Consortium, I. & Commission, E. The circular Bio-society in 2050. (2018).

  • Ramaswami, A., Russell, A. G., Culligan, P. J., Rahul Sharma, K. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science (1979) 352, 940–943 (2016).

    CAS 

    Google Scholar 

  • Cooper, C. M., Troutman, J. P., Awal, R., Habibi, H. & Fares, A. Climate change-induced variations in blue and green water usage in U.S. urban agriculture. J. Clean. Prod. 348, 567–579 (2022).

    Article 

    Google Scholar 

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article 
    CAS 

    Google Scholar 

  • Paul, S., Dutta, A., Defersha, F. & Dubey, B. Municipal food waste to biomethane and biofertilizer: A circular economy concept. Waste Biomass Valorizat. 9, 601–611 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bergstrand, K. J. Organic fertilizers in greenhouse production systems—A review. Sci. Hortic. 295, 1–8 (2022).

    Article 

    Google Scholar 

  • Chiaregato, C. G., França, D., Messa, L. L., dos Santos Pereira, T. & Faez, R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr. Polym. 279, 1–10 (2022).

    Article 

    Google Scholar 

  • Timilsena, Y. P. et al. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 95, 1131–1142 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 613–614, 829–839 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J. & Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 164, 32–52 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lv, G. et al. Biochar-based fertilizer enhanced Cd immobilization and soil quality in soil-rice system. Ecol. Eng. 171, 1–12 (2021).

    Article 

    Google Scholar 

  • Clark, M. J. & Zheng, Y. Fertilizer rate influences production scheduling of sedum-vegetated green roof mats. Ecol. Eng. 71, 644–650 (2014).

    Article 

    Google Scholar 

  • Samoraj, M. et al. Biochar in environmental friendly fertilizers—Prospects of development products and technologies. Chemosphere 296, 1–7 (2022).

    Article 

    Google Scholar 

  • Dimkpa, C. O., Fugice, J., Singh, U. & Lewis, T. D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total Environ. 731, 1–9 (2020).

    Article 

    Google Scholar 

  • Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A. & Barakat, A. Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. J. Control. Release 330, 341–361 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García-Garizábal, I., Causapé, J. & Abrahao, R. Nitrate contamination and its relationship with flood irrigation management. J. Hydrol. (AMST) 442–443, 15–22 (2012).

    Article 

    Google Scholar 

  • Adu-Poku, D., Ackerson, N. O. B., Devine, R. N. O. A. & Addo, A. G. Climate mitigation efficiency of nitrification and urease inhibitors: Impact on N2O emission—A review. Sci. Afr. 16, 1–7 (2022).

    Google Scholar 

  • Ding, W., Qin, H., Yu, S. & Yu, S. L. The overall and phased nitrogen leaching from a field bioretention during rainfall runoff events. Ecol. Eng. 179, 1–9 (2022).

    Article 

    Google Scholar 

  • Li, X. et al. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain—A field study in a modern agricultural park. Ecol. Eng. 169, 1–10 (2021).

    Article 

    Google Scholar 

  • Michalsky, R. & Pfromm, P. H. Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure. AIChE J. 58, 3203–3213 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pleissner, D. Decentralized utilization of wasted organic material in urban areas: A case study in Hong Kong. Ecol. Eng. 86, 120–125 (2016).

    Article 

    Google Scholar 

  • Masullo, A. Organic wastes management in a circular economy approach: Rebuilding the link between urban and rural areas. Ecol. Eng. 101, 84–90 (2017).

    Article 

    Google Scholar 

  • Zeng, Y., de Guardia, A., Ziebal, C., de Macedo, F. J. & Dabert, P. Nitrogen dynamic and microbiological evolution during aerobic treatment of digested sludge. Waste Biomass Valorizat. 5, 441–450 (2014).

    CAS 

    Google Scholar 

  • Nagarajan, S., Eswaran, P., Masilamani, R. P. & Natarajan, H. Chicken feather compost to promote the plant growth activity by using Keratinolytic Bacteria. Waste Biomass Valorizat. 9, 531–538 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bhat, S. A., Singh, J. & Vig, A. P. Earthworms as organic waste managers and biofertilizer producers. Waste Biomass Valorizat. 9, 1073–1086 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mekki, A., Arous, F., Aloui, F. & Sayadi, S. Treatment and valorization of agro-wastes as biofertilizers. Waste Biomass Valorizat. 8, 611–619 (2017).

    Article 
    CAS 

    Google Scholar 

  • Liu, T. et al. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. Sci. Total Environ. 833, 1–10 (2022).

    Article 

    Google Scholar 

  • Siddiqui, S. A. et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 140, 1–13 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bortolini, S. et al. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. J. Clean. Prod. 262, 1–10 (2020).

    Article 

    Google Scholar 

  • Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C. & Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorizat. 2, 357–363 (2011).

    Article 
    CAS 

    Google Scholar 

  • Cai, M. et al. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Environ. Microbiol. 20, 4051–4062 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, C. et al. Characteristics and mechanisms of ciprofloxacin degradation by black soldier fly larvae combined with associated intestinal microorganisms. Sci. Total Environ. 811, 1–8 (2022).

    Article 

    Google Scholar 

  • Pang, W. et al. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. Environ. Sci. Pollut. Res. 27, 42767–42777 (2020).

    Article 
    CAS 

    Google Scholar 

  • Beskin, K. v. et al. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. Waste Manag. 74, 213–220 (2018).

  • Gligorescu, A. et al. Pilot scale production of Hermetia illucens (L.) larvae and frass using former foodstuffs. Clean Eng. Technol. 10, 1–10 (2022).

  • Rosa, R. et al. Life cycle assessment of chemical vs enzymatic-assisted extraction of proteins from black soldier fly prepupae for the preparation of biomaterials for potential agricultural use. ACS Sustain. Chem. Eng. 8, 14752–14764 (2020).

    Article 
    CAS 

    Google Scholar 

  • Surendra, K. C. et al. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 117, 58–80 (2020).

  • Hasnol, S. et al. A review on insights for green production of unconventional protein and energy sources derived from the larval biomass of black soldier fly. Processes 8, 1–13 (2020).

    Article 

    Google Scholar 

  • Wong, C. Y. et al. Rhizopus oligosporus-assisted valorization of coconut endosperm waste by black soldier fly larvae for simultaneous protein and lipid to biodiesel production. Processes 9, 1–14 (2021).

    Article 

    Google Scholar 

  • Raksasat, R. et al. Blended sewage sludge–palm kernel expeller to enhance the palatability of black soldier fly larvae for biodiesel production. Processes 9, 1–13 (2021).

    Article 

    Google Scholar 

  • Dortmans B.M.A., Diener S. & Verstappen B.M. Black Soldier Fly Biowaste Processing A Step-by-Step Guide. (2017).

  • European Parliament. Regulation (EC) No 767/2009 of the European Parliament and of the council. (2009).

  • Italian Government. Norme in materia ambientale. (Dlgs, 2006).

  • European Parliament. Regulation (EC) No 178/2002 of the European Parliament and of the Council. Official Journal of the European Communities (2002).

  • Palma, L., Fernandez-Bayo, J., Niemeier, D., Pitesky, M. & VanderGheynst, J. S. Managing high fiber food waste for the cultivation of black soldier fly larvae. NPJ Sci. Food 3, 1–7 (2019).

    Article 

    Google Scholar 

  • Righi, C. et al. Suitability of porous inorganic materials from industrial residues and bioproducts for use in horticulture: A multidisciplinary approach. Appl. Sci. 12, 5437 (2022).

    Article 
    CAS 

    Google Scholar 

  • Barbi, S. et al. Preliminary study on sustainable NPK slow-release fertilizers based on byproducts and leftovers: A design-of-experiment approach. ACS Omega 5, 27154–27163 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macavei, L. I., Benassi, G., Stoian, V. & Maistrello, L. Optimization of Hermetia illucens (L.) egg laying under different nutrition and light conditions. PLoS ONE 15, 1–12 (2020).

    Article 

    Google Scholar 

  • Leni, G., Maistrello, L., Pinotti, G., Sforza, S. & Caligiani, A. Production of carotenoid-rich Hermetia illucens larvae using specific agri-food by-products. J. Insects Food Feed 1, 1–12 (2022).

    Google Scholar 

  • Caligiani, A. et al. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 105, 812–820 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Montgomery, D. C. Design and Analysis of Experiments Eighth Edition. Design vol. 2 (2012).

  • Barbi, S., Messori, M., Manfredini, T., Pini, M. & Montorsi, M. Rational design and characterization of bioplastics from Hermetia illucens prepupae proteins. Biopolymers 110–118, (2019).

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., WikstrÄom, C. & Wold, S. Design of Experiments: Principles and Applications. (2008).

  • Morris, P. & John, P. W. M. Statistical Design and Analysis of Experiments. Math. Gaz. 83, 189–200 (1999).

    Article 

    Google Scholar 

  • Kros, J. F. & Mastrangelo, C. M. Comparing multi-response design methods with mixed responses. Qual Reliab Eng Int 20, 527–539 (2004).

    Article 

    Google Scholar 

  • Fernandez Pulido, C. R., Caballero, J., Bruns, M. A. & Brennan, R. A. Recovery of waste nutrients by duckweed for reuse in sustainable agriculture: Second-year results of a field pilot study with sorghum. Ecol Eng 168, 1–8 (2021).

  • Kaya, M. et al. Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach. Carbohydr. Polym. 163, 162–169 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaya, M. et al. On chemistry of γ-chitin. Carbohydr. Polym. 176, 177–186 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poerio, A. et al. Extraction and physicochemical characterization of chitin from cicada orni sloughs of the south-eastern French mediterranean basin. Molecules 25, 1–12 (2020).

    Article 

    Google Scholar 

  • Sagheer, F. A. A., Al-Sughayer, M. A., Muslim, S. & Elsabee, M. Z. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 77, 410–419 (2009).

    Article 

    Google Scholar 

  • Waśko, A. et al. The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol. 92, 316–320 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Wang, K. et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage. Cellulose 27, 1845–1852 (2020).

    Article 
    CAS 

    Google Scholar 

  • Morin, A. & Dufresne, A. Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone). Macromolecules 35, 2190–2199 (2002).

    Article 
    CAS 

    Google Scholar 

  • George Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. (John Wiley & Sons, 2004).

  • Chen, P. & Zhang, L. New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol. Biosci. 5, 237–245 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robertson, N.-L.M., Nychka, J. A., Alemaskin, K. & Wolodko, J. D. Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. J. Appl. Polym. Sci. 130, 969–980 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chavez, M. The sustainability of industrial insect mass rearing for food and feed production: Zero waste goals through by-product utilization. Curr. Opin. Insect. Sci. 48, 44–49 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fisher, H. J. et al. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 521, 1–12 (2020).

    Article 

    Google Scholar 

  • Figueiredo, L. R. F., Nepomuceno, N. C., Melo, J. D. D. & Medeiros, E. S. Glycerol-based polymer adhesives reinforced with cellulose nanocrystals. Int. J. Adhes. Adhes. 110, (2021).


  • Source: Ecology - nature.com

    Species traits determined different responses to “zero-growth” policy in China’s marine fisheries

    Reversing the charge