in

Arbuscular mycorrhiza can be disadvantageous for weedy annuals in competition with paired perennial plants

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn. (Academic Press, 2008).

    Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Štajerová, K., Šmilauerová, M. & Šmilauer, P. Arbuscular mycorrhizal symbiosis of herbaceous invasive neophytes in the Czech Republic. Preslia 81, 341–355 (2009).

    Google Scholar 

  • Hempel, S. et al. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. FungalRoot: Global online database of plant mycorrhizal associations. New Phytol. 227, 955–966 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lekberg, Y., Hammer, E. C. & Olsson, P. A. Plants as resource islands and storage units—Adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74, 336–345 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Newsham, K. K., Fitter, A. H. & Watkinson, A. R. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83, 991–1000 (1995).

    Article 

    Google Scholar 

  • Vigo, C., Norman, J. R. & Hooker, J. E. Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49, 509–514 (2000).

    Article 

    Google Scholar 

  • Pfeffer, P. E., Douds, D. D., Becard, G. & Shachar-Hill, Y. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120, 587–598 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124, 949–958 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez, R., Mendoza, B. & Lizaso, J. I. Mycorrhiza effect on maize P uptake from phosphate rock and superphosphate. Commun. Soil Sci. Plant Anal. 40, 13–14 (2009).

    Article 

    Google Scholar 

  • Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and 33P. New Phytol. 124, 489–494 (1993).

    Article 
    CAS 

    Google Scholar 

  • Smith, S. E., Smith, F. A. & Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162, 511–524 (2004).

    Article 

    Google Scholar 

  • Smith, M. D., Hartnett, D. C. & Wilson, G. W. T. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia 121, 574–582 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liao, H. et al. Soil microbes regulate forest succession in a subtropical ecosystem in China: Evidence from a mesocosm experiment. Plant Soil 430, 277–289 (2018).

    Article 
    CAS 

    Google Scholar 

  • Awaydul, A. et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29, 29–38 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Callaway, R. M., Newingham, B., Zabinski, C. A. & Mahall, B. E. Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours. Ecol. Lett. 4, 429–433 (2001).

    Article 

    Google Scholar 

  • Workman, R. E. & Cruzan, M. B. Common mycelial networks impact competition in an invasive grass. Am. J. Bot. 103, 1041–1049 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. Camb. Philos. Soc. 75, 65–93 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vogelsang, K. M. & Bever, J. D. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology 90, 399–407 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Horton, T. R. Mycorrhizal Networks, Ecological Studies 224 (Springer, 2015).

    Book 

    Google Scholar 

  • Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232 (2015).

    Article 
    CAS 

    Google Scholar 

  • Jasper, D. A., Abbott, J. K. & Robson, A. D. The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol. 118, 471–476 (1991).

    Article 

    Google Scholar 

  • Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Heyde, M., Ohsowski, B., Abbott, L. K. & Hart, M. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27, 431–440 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Verbruggen, E. & Kiers, E. T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 3, 547–560 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Řezáčová, V., Řezáč, M., Gryndlerová, H., Wilson, G. W. T. & Michalová, T. Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Sci. Rep. 10, 20287. https://doi.org/10.1038/s41598-020-77030-0 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W. & Gannon, J. E. Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85, 1062–1071 (2004).

    Article 

    Google Scholar 

  • Abhilasha, D. & Joshi, J. Enhanced fitness due to higher fecundity, increased defence against a specialist and tolerance towards a generalist herbivore in an invasive annual plant. J. Plant Ecol. 2, 77–86 (2009).

    Article 

    Google Scholar 

  • Shah, M. A., Reshi, Z. A. & Khasa, D. Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza 20, 67–72 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Shah, M. A., Reshi, Z. A. & Rasool, N. Plant invasions induce a shift in Glomalean spore diversity. Trop. Ecol. 51, 317–323 (2010).

    Google Scholar 

  • Shah, M. A., Beaulieu, M.-E., Reshi, Z. A., Qureshi, S. & Khasa, D. P. A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecol. Process. 4, 7. https://doi.org/10.1186/s13717-015-0034-0 (2015).

    Article 

    Google Scholar 

  • Řezáčová, V., Konvalinková, T. & Řezáč, M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia 75, 693–699 (2020).

    Article 

    Google Scholar 

  • Shah, M. A., Reshi, Z. & Rashid, I. Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Appl. Soil Ecol. 40, 330–337 (2008).

    Article 

    Google Scholar 

  • Řezáčová, V. et al. Plant invasion alters community structure and decreases diversity of arbuscular mycorrhizal fungal communities. Appl. Soil Ecol. 167, 104039 (2021).

    Article 

    Google Scholar 

  • Řezáčová, V. et al. The root-associated arbuscular mycorrhizal fungal assemblages of exotic alien plants are simplified in invaded distribution ranges, but dominant species are retained: A trans-continental perspective. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.13108 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Song, U. et al. Mowing: A cause of invasion, but also a potential solution for management of the invasive, alien plant species Erigeron annuus (L.) Pers.. J. Environ. Manag. 223, 530–536 (2018).

    Article 

    Google Scholar 

  • Hempel, S. et al. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 94, 1389–1399 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Řezáčová, V., Řezáč, M., Líblová, Z., Michalová, T. & Heneberg, P. Stable colonization of native plants and early invaders by arbuscular mycorrhizal fungi after exposure to recent invaders from the Asteraceae family. IPSM 14, 147–155 (2021).

    Article 

    Google Scholar 

  • Wilson, G. W. T. & Hartnett, D. C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am. J. Bot. 85, 1732–1738 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rinaudo, V., Barberi, P., Giovanneti, M. & van der Heijden, M. G. A. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333, 7–20 (2010).

    Article 
    CAS 

    Google Scholar 

  • Veiga, R. S. L., Jansa, J., Frossard, E. & van der Heijden, M. G. A. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds?. PLoS ONE 6, e27825 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boerner, R. E. J. Plant life span and response to inoculation with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 1, 153–161 (1992).

    Article 

    Google Scholar 

  • Wilson, S. D. Tilman plant competition and resource availability in response to disturbance and fertilization. Ecology 74, 599–611 (1993).

    Article 

    Google Scholar 

  • Xiao-Bin, W., Dian-Xiong, C. A. I., Hoogmoed, W. B., Oenema, O. & Perdok, U. D. Potential effect of conservation tillage on sustainable land use: A review of global long-term studies. Pedosphere 16, 587–595 (2006).

    Article 

    Google Scholar 

  • Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12, 563–569 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Latef, A. A. H. A. et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 59, 407–426 (2016).

    Article 

    Google Scholar 

  • Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. & Rejmanek, M. Plant invasions—The role of mutualisms. Biol. Rev. 75, 65–93 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Řezáčová, V. et al. Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil 425, 441–456 (2018).

    Article 

    Google Scholar 

  • Newman, E. I. A method of estimating total length of root in a sample. J. Appl. Ecol. 3, 139–145 (1966).

    Article 

    Google Scholar 

  • Bukovská, P., Gryndler, M., Gryndlerová, H., Püschel, D. & Jansa, J. Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers. Front. Microbiol. 7, 711. https://doi.org/10.3389/fmicb.2016.00711 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hewitt, E. J. Sand and water culture methods used in the study of plant nutrition. CAB Tech. Commun. 22, 431–432 (1966).

    Google Scholar 

  • Řezáčová, V. et al. Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—A case of dysfunctional symbiosis. Pedobiologia 62, 48–55 (2017).

    Article 

    Google Scholar 

  • Řezáčová, V. et al. Little cross-feeding of the mycorrhizal networks shared between C3Panicum bisulcatum and C4Panicum maximum under different temperature regimes. Front. Microbiol. 9, 449 (2018).

    Google Scholar 

  • Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).

    Article 
    CAS 

    Google Scholar 

  • Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).

    Article 
    CAS 

    Google Scholar 

  • McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koske, R. E. & Gemma, J. N. A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92, 486–505 (1989).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2022)


  • Source: Ecology - nature.com

    Features of urban green spaces associated with positive emotions, mindfulness and relaxation

    Using game engines and “twins” to co-create stories of climate futures