in

Asynchrony in coral community structure contributes to reef-scale community stability

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).

    CAS 

    Google Scholar 

  • Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    ADS 

    Google Scholar 

  • Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).

    Google Scholar 

  • Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).

    Google Scholar 

  • van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86, 1797–1807 (2005).

    Google Scholar 

  • Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. Plos Biol. 6, e122 (2008).

    Google Scholar 

  • Loreau, M. et al. In Metacommunities: Spatial Dynamics and Ecological Communities (eds Holyoak, M. et al.) (The University of Chicago Press, 2005).

    Google Scholar 

  • Loreau, M. From Populations to Ecosystems (Princeton University Press, 2010). https://doi.org/10.1515/9781400834167.vii.

    Book 

    Google Scholar 

  • Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).

    Google Scholar 

  • Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).

    Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef resilience: Linking theory to practice. Coral Reefs 27, 795–809 (2008).

    ADS 

    Google Scholar 

  • Virah-Sawmy, M., Gillson, L. & Willis, K. J. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol. Monogr. 79, 557–574 (2009).

    Google Scholar 

  • Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).

    Google Scholar 

  • Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  • Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).

    MATH 

    Google Scholar 

  • Wang, S., Haegeman, B. & Loreau, M. Dispersal and metapopulation stability. PeerJ 3, e1295 (2015).

    Google Scholar 

  • Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  • Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Bouvier, T. et al. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS ONE 7, e37620 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Hammond, M., Loreau, M., Mazancourt, C. & Kolasa, J. Disentangling local, metapopulation, and cross-community sources of stabilization and asynchrony in metacommunities. Ecosphere 11, e03078 (2020).

    Google Scholar 

  • Lamy, T., Legendre, P., Chancerelle, Y., Siu, G. & Claudet, J. Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE 10, e0138696 (2015).

    Google Scholar 

  • Lamy, T. et al. Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology 100, e02719 (2019).

    Google Scholar 

  • Stier, A. C., Shelton, A. O., Samhouri, J. F., Feist, B. E. & Levin, P. S. Fishing, environment, and the erosion of a population portfolio. Ecosphere https://doi.org/10.1002/ecs2.3283 (2020).

    Article 

    Google Scholar 

  • Burgess, S. C. et al. Beyond connectivity: How empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).

    Google Scholar 

  • Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc. R. Soc. B Biol. Sci. 278, 2954–2961 (2011).

    Google Scholar 

  • Wood, S., Paris, C. B., Ridgwell, A. & Hendy, E. J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 23, 1–11 (2014).

    Google Scholar 

  • Loreau, M. et al. Biodiversity as insurance: From concept to measurement and application. Biol. Rev. https://doi.org/10.1111/brv.12756 (2021).

    Article 

    Google Scholar 

  • Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).

    Google Scholar 

  • Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).

    Google Scholar 

  • Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).

    Google Scholar 

  • Loreau, M. & Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Google Scholar 

  • Gross, K. et al. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    Google Scholar 

  • Sullaway, G. H., Shelton, A. O. & Samhouri, J. F. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13575 (2021).

    Article 

    Google Scholar 

  • Adjeroud, M., Augustin, D., Galzin, R. & Salvat, B. Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar. Ecol. Prog. Ser. 237, 121–131 (2002).

    ADS 

    Google Scholar 

  • Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).

    ADS 

    Google Scholar 

  • Pratchett, M. S., Trapon, M., Berumen, M. L. & Chong-Seng, K. Recent Disturbances Augment Community Shifts in Coral Assemblages in Moorea, French Polynesia (SpringerLink, 2011). https://doi.org/10.1007/s00338-010-0678-2.

    Book 

    Google Scholar 

  • Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).

    ADS 
    CAS 

    Google Scholar 

  • McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B 287, 20192628 (2020).

    Google Scholar 

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).

    Google Scholar 

  • Adam, T. C. et al. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE 6, e23717 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).

    ADS 

    Google Scholar 

  • Pérez-Rosales, G. et al. Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Mar. Pollut. Bull. 170, 112659 (2021).

    Google Scholar 

  • Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    ADS 

    Google Scholar 

  • Jackson, J. B. C. et al. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland (2014)

  • Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615 (2018).

    ADS 

    Google Scholar 

  • Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Edmunds, P. J. Response diversity in corals: Hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology https://doi.org/10.1002/ecy.3324 (2021).

    Article 

    Google Scholar 

  • Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).

    ADS 

    Google Scholar 

  • Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875 (2018).

    Google Scholar 

  • Hench, J. L., Leichter, J. J. & Monismith, S. G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 53, 2681–2694 (2008).

    ADS 

    Google Scholar 

  • Barry, J. P. & Dayton, P. K. Ecological heterogeneity. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3062-5_14 (1991).

    Article 

    Google Scholar 

  • Edmunds, P. & Bruno, J. The importance of sampling scale in ecology: Kilometer-wide variation in coral reef communities. Mar. Ecol. Prog. Ser. 143, 165–171 (1996).

    ADS 

    Google Scholar 

  • Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).

    ADS 
    CAS 

    Google Scholar 

  • van Oppen, M. J. H. & Lough, J. M. Coral bleaching, patterns, processes, causes and consequences. Ecol. Stud. https://doi.org/10.1007/978-3-319-75393-5_14 (2018).

    Article 

    Google Scholar 

  • Monismith, S. G. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007).

    ADS 
    MATH 

    Google Scholar 

  • Edmunds P. Of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.33 https://doi.org/10.6073/pasta/1f05f1f52a2759dc096da9c24e88b1e8 (2020).

  • Cowles, J. et al. Resilience: insights from the U.S. Long-term ecological research network. Ecosphere 12, e03434 (2021).

    Google Scholar 

  • Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).

    Google Scholar 

  • Veron, J. E. N. Corals of the world, v. 1–3. Australian Institute of Marine Science (2000)

  • Washburn, L of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Ocean Currents and Biogeochemistry: salinity, temperature and current at CTD and ADCP mooring FOR01 from 2004 ongoing. knb-lter-mcr.30.36doi:10.6073/pasta/124d19950c5234bf1937661989dcced7 (2021).

  • Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).

    ADS 

    Google Scholar 

  • Dean, R. G. & Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Vol. 2 (World Scientific, 1991).

    Google Scholar 

  • Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25, 93–97 (2006).

    ADS 

    Google Scholar 

  • Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).

    ADS 

    Google Scholar 

  • Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Google Scholar 

  • Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).

    Google Scholar 

  • RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).

  • Oksanen J. et al. vegan: Community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).

  • Wickham, et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).

    Article 
    ADS 

    Google Scholar 

  • Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).

    Google Scholar 

  • Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).

    Google Scholar 

  • Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 

    Google Scholar 

  • Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).

    Google Scholar 

  • Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).

    Google Scholar 

  • Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).

    CAS 

    Google Scholar 

  • Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451 (2009).

    Google Scholar 

  • Connell, J. H. Diversity in tropical rain forests and coral reefs author. Science 199, 1302–1310 (1978).

    ADS 
    CAS 

    Google Scholar 

  • Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).

    Google Scholar 

  • Moritz, C. et al. Long-term monitoring of benthic communities reveals spatial determinants of disturbance and recovery dynamics on coral reefs. Mar. Ecol. Prog. Ser. 672, 141–152 (2021).

    ADS 

    Google Scholar 

  • Dietzel, A. et al. The spatial footprint and patchiness of large scale disturbances on coral reefs. Global Change Biol. 27, 4825–4838 (2021).

    CAS 

    Google Scholar 

  • Leichter, J. et al. Biological and physical interactions on a tropical island coral reef: Transport and retention processes on Moorea, French Polynesia. Oceanography 26, 52–63 (2011).

    Google Scholar 

  • Porter, J. W. et al. Population trends among Jamaican reef corals. Nature 294, 249–250 (1981).

    ADS 

    Google Scholar 

  • Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Whittaker, R. H. & Levin, S. A. The role of mosaic phenomena in natural communities. Theor. Popul. Biol. 12, 117–139 (1977).

    CAS 

    Google Scholar 

  • Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).

    ADS 

    Google Scholar 

  • Stoddart, D. R. Effects of Hurricane Hattie on the British Honduras reefs and cays, October 30–31, 1961. Atoll Res. Bull. 95, 1–142 (1963).

    Google Scholar 

  • Witman, J. D. Physical disturbance and community structure of exposed and protected reefs: A case study from St. John U.S. Virgin Islands. Integr. Comp. Biol. 32, 641–654 (1992).

    Google Scholar 

  • Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).

    Google Scholar 

  • Mellin, C., MacNeil, M. A., Cheal, A. J., Emslie, M. J. & Caley, M. J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).

    Google Scholar 

  • Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).

    Google Scholar 

  • Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl. Acad. Sci. 117, 25595–25600 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Walter, J. A. et al. The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology https://doi.org/10.1002/ecy.3486 (2021).

    Article 

    Google Scholar 

  • Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography 42, 1200–1211 (2019).

    Google Scholar 

  • Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B 287, 20192520 (2020).

    Google Scholar 

  • Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).

    Google Scholar 

  • Downing, A. L., Brown, B. L. & Leibold, M. A. Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95, 173–184 (2014).

    Google Scholar 

  • Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).

    Google Scholar 

  • Townsend, D. L. & Gouhier, T. C. Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. Theor. Ecol. 12, 319–327 (2019).

    Google Scholar 

  • Yeager, M. E., Gouhier, T. C. & Hughes, A. R. Predicting the stability of multitrophic communities in a variable world. Ecology 101, e02992 (2020).

    Google Scholar 

  • Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.10.046 (2021).

    Article 

    Google Scholar 

  • Jackson, J. B. C. Morphological strategies of sessile animals. In Biology and Systematics of Colonial Organisms (eds Larwood, G. & Rosen, B. R.) 499–555 (Academic, 1979).

    Google Scholar 

  • Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef Corals: The helix experiment. Science 239, 1422–1424 (1988).

    ADS 
    CAS 

    Google Scholar 

  • Edmunds, P. J. Unusually high coral recruitment during the 2016 El Niño in Mo’orea, French Polynesia. PLoS ONE 12, e0185167 (2017).

    Google Scholar 

  • Bull, G. Distribution and abundance of coral plankton. Coral Reefs 4, 197–200 (1986).

    ADS 

    Google Scholar 

  • Hodgson, G. Abundance and distribution of planktonic coral larvae in Kaneohe Bay, Oahu, Hawaii. Mar. Ecol. Prog. Ser. 26, 61–71 (1985).

    ADS 

    Google Scholar 

  • Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Familiarity, age, weaning and health status impact social proximity networks in dairy calves

    Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change