in

Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery

  • Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).

    PubMed 

    Google Scholar 

  • Heithaus, M. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).

    Article 

    Google Scholar 

  • Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Env. Resour. 41, 83–116 (2016).

    Article 

    Google Scholar 

  • Anderson, O. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).

    Article 

    Google Scholar 

  • Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).

    Article 

    Google Scholar 

  • Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).

    Article 

    Google Scholar 

  • Werner, T., Kraus, S., Read, A. & Zollett, E. Fishing techniques to reduce the bycatch of threatened marine animals. Mar. Technol. Soc. J. 40, 50–68 (2006).

    Article 

    Google Scholar 

  • Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish Biol. Fish. 27, 881–908 (2017).

    Article 

    Google Scholar 

  • Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49 (2005).

    Article 

    Google Scholar 

  • Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS ONE 9, e84499 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juan-Jorda, M., Murua, H., Arrizabalaga, H., Dulvy, N. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish Fish. 19, 321–339 (2018).

    Article 

    Google Scholar 

  • ACAP. Review and best practice advice for reducing the impact of pelagic longline fisheries on seabirds. Agreement on the Conservation of Albatrosses and Petrels, Hobart, Australia (2019).

  • Crespo, P. & Crawford, R. Bycatch and the Marine Stewardship Council (MSC): A Review of the Efficacy of the MSC Certification Scheme in Tackling the Bycatch of Non-target Species (Birdlife International, 2019).

    Google Scholar 

  • Nakano, H., Okazaki, M. & Okamoto, H. Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull. Nat. Res. Inst. Far Seas Fish. 34, 43–62 (1997).

    Google Scholar 

  • Musyl, M. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).

    Google Scholar 

  • Gabr, M. & El-Haweet, A. Pelagic longline fishery for albacore in the Mediterranean Sea off Egypt. Turk. J. Fish. Aquat. Sci. 12, 735–741 (2012).

    Article 

    Google Scholar 

  • MEC. Marine Stewardship Council Public Certification Report. French Polynesia Albacore and Yellowfin Longline Fishery. ME Certification Ltd., Lymington, UK (2018).

  • Gilman, E. et al. Robbing Peter to pay Paul: Replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).

    Article 

    Google Scholar 

  • SCS. Tri Marine Atlantic albacore (Thunnus alalunga) Longline Fishery. MSC Fishery Assessment Report. SCS Global Services, Emeryville, USA (2022).

  • Gilman, E. et al. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: A global meta-analytic synthesis. Sci. Rep. https://doi.org/10.1038/s41598-022-21976-w (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WCPFC. Conservation and Management Measure to Mitigate the Impact of Fishing for Highly Migratory Fish Stocks on Seabirds. CMM 2018-03. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2018).

  • IATTC. Resolution to Mitigate the Impact on Seabirds of Fishing for Species Covered by the IATTC. Resolution C-11-02. Inter-American Tropical Tuna Commission, La Jolla, USA (2011).

  • Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).

    Article 

    Google Scholar 

  • Huang, H. Incidental catch of seabirds and sea turtles by Taiwanese longline fleets in the Pacific Ocean. Fish. Res. 170, 179–189 (2015).

    Article 

    Google Scholar 

  • Jimenez, S. et al. Towards mitigation of seabird bycatch: Large-scale effectiveness of night setting and tori lines across multiple pelagic longline fleets. Bio. Cons. 247, 108642 (2020).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2022–1. Online resource www.iucnredlist.org. ISSN 2307–8235. International Union for the Conservation of Nature, Gland, Switzerland (2022).

  • Gilman, E., Castejon, V., Loganimoce, E. & Chaloupka, M. Capability of a pilot fisheries electronic monitoring system to meet scientific and compliance monitoring objectives. Mar. Policy 113, 103792 (2020).

    Article 

    Google Scholar 

  • Gilman, E., Chaloupka, M. & Sieben, C. Ecological risk assessment of a data-limited fishery using an ensemble of approaches. Mar. Policy 133, 104752 (2021).

    Article 

    Google Scholar 

  • WPRFMC. Appendix 5. Fact Sheets on Seabird Bycatch Mitigation Methods for Pelagic Longline Fisheries. Report of the Workshop to Review Seabird Bycatch Mitigation Measures for Hawaii’s Pelagic Longline Fisheries. ISBN: 978–1–944827–37–3. Western Pacific Regional Fishery Management Council, Honolulu (2019).

  • Melvin, E., Dietrich, K., Suryan, R. & Fitzgerald, S. Lessons from seabird conservation in Alaskan longline fisheries. Cons. Biol. 33, 842–852 (2019).

    Article 

    Google Scholar 

  • Ward, P. & Myers, R. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142 (2005).

    Article 

    Google Scholar 

  • Rice, P., Goodyear, C., Prince, E., Snodgrass, D. & Serafy, J. Use of catenary geometry to estimate hook depth during near-surface pelagic longline fishing: Theory versus practice. N. Am. J. Fish. Manag. 27, 1148–1161 (2007).

    Article 

    Google Scholar 

  • Zhou, C. & Brothers, N. Interaction frequency of seabirds with longline fisheries: Risk factors and implications for management. ICES J. Mar. Sci. 78, 1278–1287 (2021).

    Article 

    Google Scholar 

  • Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).

    Article 

    Google Scholar 

  • Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).

    Article 

    Google Scholar 

  • Williams, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep -Sea Res. II 113, 154–169 (2015).

  • Punt, A., Butterworth, D., de Moor, C., De Oliveira, J. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).

    Article 

    Google Scholar 

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).

    MathSciNet 

    Google Scholar 

  • Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).

  • Fahrmeir, L. & Lang, S. Bayesian inference for generalised additive mixed models based on Markov random field priors. Appl. Stat. 50, 201–220 (2001).

    Google Scholar 

  • Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Fávero, L., Hair, J., Souza, R., Albergaria, M. & Brugni, T. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9, 1100 (2021).

    Article 

    Google Scholar 

  • Gilman, E. et al. Tori lines mitigate seabird bycatch in a pelagic longline fishery. Rev. Fish Biol. Fish. 31, 653–666 (2021).

    Article 

    Google Scholar 

  • Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).

    Article 
    ADS 

    Google Scholar 

  • Yau, K., Wang, K. & Lee, A. Zero-Inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Congdon, P. Applied Bayesian Modelling. Wiley and Sons Ltd, UK. (2003).

  • Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).

    Google Scholar 

  • Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: an improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Kruschke, J. & Liddell, T. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Article 

    Google Scholar 

  • Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans


  • Source: Ecology - nature.com

    Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

    Responsive design meets responsibility for the planet’s future