in

Genetic structuring and invasion status of the perennial Ambrosia psilostachya (Asteraceae) in Europe

  • Van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–101 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fried, G., Chauvel, B., Reynaud, P. & Sache, I. Decreases in crop production by non-native weeds, pests, and pathogens. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 83–101 (Springer, 2017).

    Chapter 

    Google Scholar 

  • Nentwig, W., Mebs, D. & Vilà, M. Impact of non-native animals and plants on human health. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 277–293 (Springer, 2017).

    Chapter 

    Google Scholar 

  • Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strother, J. L. Ambrosia L. in Flora of North America, Vol. 21 efloras.org. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=101325 (2007). Accessed 10 August 2022.

  • Oswalt, M. L. & Marshall, G. D. Ragweed as an example of worldwide allergen expansion. All. Asth. Clin. Immun. 4, 130–135 (2008).

    Article 

    Google Scholar 

  • Payne, W. W. Biosystematic studies of four widespread weedy species of ragweeds, Ambrosia: Compositae. PhD Thesis, University of Michigan (1962).

  • Burbach, G. J. et al. Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64, 664–665 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, B. et al. Immunological and molecular characterization of Amb P V allergens from Ambrosia psilostachya (western ragweed) pollen. J. Immunol. 152, 2882–2889 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karrer, G. et al. Ambrosia in Europe. Habitus, Leaves, Seeds, 6 European Ragweed Species. Comparison of traits. EU-COST-Action FA-1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe’. http://internationalragweedsociety.org/smarter/wp-content/uploads/6AmbrosiaSpecies.pdf (2016). Accessed 10 August 2022.

  • Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia L.. J. Ecol. 103, 1069–1098 (2015).

    Article 

    Google Scholar 

  • Payne, W. W. A re-evaluation of the genus Ambrosia (Compositae). J. Arnold Arbor. 45, 401–438 (1964).

    Article 

    Google Scholar 

  • Müller-Schärer, H. et al. Cross-fertilizing weed science and plant invasion science. Basic Appl. Ecol. 33, 1–13 (2018).

    Article 

    Google Scholar 

  • Chapman, D. S. et al. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol. 22, 3067–3079 (2016).

    Article 
    ADS 

    Google Scholar 

  • Mang, T., Essl, F., Moser, D. & Dullinger, S. Climate warming drives invasion history of Ambrosia artemisiifolia in central Europe. Preslia 90, 59–81 (2018).

    Article 

    Google Scholar 

  • Liu, X.-L. et al. The current and future potential geographical distribution of common ragweed, Ambrosia artemisiifolia in China. Pak. J. Bot. 53, 167–172 (2021).

    ADS 

    Google Scholar 

  • Allard, H. A. The North American ragweeds and their occurrence in other parts of the world. Science 98, 292–293 (1943).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Greuter, W. Compositae (pro parte majore) in Compositae. Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity (ed. Greuter, W. & Raab-Straube, E. von) https://europlusmed.org/cdm_dataportal/taxon/76610e67-b2d4-4aef-a785-c4555af5b150 (Accessed 22 August 2022).

  • Abramova, L. M. Expansion of invasive alien plant species in the Republic of Bashkortostan, the Southern Urals: Analysis of causes and ecological consequences. Russ. J. Ecol. 43, 352–357 (2012).

    Article 

    Google Scholar 

  • Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant. Sci. 36, 139–178 (2017).

    Article 

    Google Scholar 

  • Vermeire, L. T. & Gillen, R. L. Western ragweed effects on herbaceous standing crop in Great Plains grasslands. J. Range Manag. 53, 335–341 (2000).

    Article 

    Google Scholar 

  • Reece, P. E., Brummer, J. E., Northup, B. K., Koehler, A. E. & Moser, L. E. Interactions among western ragweed and other sandhills species after drought. J. Range Manag. 57, 583–589 (2000).

    Article 

    Google Scholar 

  • Wagner, W. H. & Beals, T. F. Perennial ragweeds (Ambrosia) in Michigan, with description of a new, intermediate Taxon. Rhodora 60, 177–204 (1958).

    Google Scholar 

  • Hansen, A. Ambrosia L. In Flora Europaea Vol. 4 (eds Tutin, T. G. et al.) (Cambridge University Press, 1976).

    Google Scholar 

  • Sell, P. & Murrell, G. Flora of Great Britain and Ireland, Campanulaceae–Asteraceae Vol. 4, 513–514 (Cambridge University Press, 2006).

    Book 

    Google Scholar 

  • Pignatti, S. Flora d’Italia Vol. 3 (Edagricola, 1982).

    Google Scholar 

  • Amor Morales, À., Navarro Andrés, F. & Sánchez Anta, M. Datos corológicos y morfológicos de las especies del género Ambrosia L. (Compositae) presentes en la Península Ibérica. Bot. Complut. 36, 85–96 (2012).

    Article 

    Google Scholar 

  • Karrer, G. Ambrosia. In Flora d’Italia 2nd edn, Vol. 3 (eds Guarino, R. & La Rosa, M.) 808–810 (Edagricola, 2018).

    Google Scholar 

  • Rich, T. C. G. Ragweeds (Ambrosia L.) in Britain. Grana 33, 38–43 (1994).

    Article 

    Google Scholar 

  • Chauvel, B., Fried, G., Monty, A., Rossi, J. P. & Le Bourgeois, T. Analyse de Risques Relative à L’ambroisie à Épis Lisses (Ambrosia Psilostachya DC.) et Élaboration de Recommandation De gestion (ANSES, 2017).

    Google Scholar 

  • Lawalreé, A. Les Ambrosia adventices en Europe occidentale. Bull. Jard. Botan. l’Etat Bruxelles 18, 305–315 (1947).

    Article 

    Google Scholar 

  • Karrer, G. Interessante Gefäßpflanzenfunde aus Österreich, 1. Neilreichia 12, 183–187 (2021).

    Google Scholar 

  • Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).

    Article 

    Google Scholar 

  • Djemaa, S. Caractérisation de la banque de graines de l’Ambroisie à épis lisses Ambrosia psilostachya DC (Asteraceae) et moyens de contrôle de cette espèce envahissante et allergène (Rapport de stage de Master 1 – Université de Montpellier 2 – Master IEGB, 2014).

  • Chun, Y. J., Le Corre, V. & Bretagnolle, F. Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol. Ecol. 20, 1378–1388 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Genton, B. J. et al. Isolation of five polymorphic microsatellite loci in the invasive weed Ambrosia artemisiifolia (Asteraceae) using an enrichment protocol. Mol. Ecol. Notes 5, 381–383. https://doi.org/10.1111/j.1365-294X.2005.02750.x (2005).

    Article 
    CAS 

    Google Scholar 

  • Genton, B. J., Shykoff, J. A. & Giraud, T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14, 4275–4285 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gaudeul, M., Giraud, T., Kiss, L. & Shykoff, J. A. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common Ragweed Ambrosia artemisiifolia. PLoS One 6, e17658. https://doi.org/10.1371/journal.pone.0017658 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chun, Y. J., Fumanal, B., Laitung, B. & Bretagnolle, F. Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol. 185, 1100–1107 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Gladieux, P. et al. Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol. Invasions 13, 933–944 (2010).

    Article 

    Google Scholar 

  • Li, X.-M., Liao, W.-J., Wolfe, L. M. & Zhang, D.-Y. No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS One 7(2), e31935. https://doi.org/10.1371/journal.pone.0031935 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Microsatellite DNA variation within and among invasive populations of Ambrosia artemisiifolia from the southern Pannonian Plain. Weed Res. 55, 268–277 (2015).

    Article 

    Google Scholar 

  • Ciappetta, S. et al. Invasion of Ambrosia artemisiifolia in Italy: Assessment via analysis of genetic variability and herbarium data. Flora 223, 106–113 (2016).

    Article 

    Google Scholar 

  • Meyer, L. et al. New gSSr and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS One 12(5), e0176197. https://doi.org/10.1371/journal.pone.0176197 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kropf, M., Huppenberger, A. S. & Karrer, G. Genetic structuring and diversity patterns along rivers—Local invasion history of Ambrosia artemisiifolia (Asteraceae) along the Danube River in Vienna (Austria) shows non-linear pattern. Weed Res. 58, 131–140 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sun, Y. & Roderick, G. K. Rapid evolution of invasive traits facilitates the invasion of common ragweed Ambrosia artemisiifolia. J. Ecol. 107, 2673–2687 (2019).

    Article 

    Google Scholar 

  • Li, F. et al. Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biol. Invasions 21, 2191–2209 (2019).

    Article 

    Google Scholar 

  • Payne, W. W., Raven, P. H. & Kyhos, D. W. Chromosome numbers in Compositae. IV. Ambrosieae. Am. J. Bot. 51, 419–424 (1964).

    Article 

    Google Scholar 

  • Miller, H. E., Mabry, T. J., Turner, B. L. & Payne, W. W. Infraspecific variation of sesquiterpene lactones in Ambrosia psilostachya (Compositae). Am. J. Bot. 55, 316–324 (1968).

    Article 
    CAS 

    Google Scholar 

  • Del Amo Rodriguez, S. & Gomez-Pompa, A. Variability in Ambrosia cumanensis (Compositae). Syst. Bot. 1, 363–372 (1976).

    Article 

    Google Scholar 

  • Grünwald, N. J., Everhart, S. E., Knaus, B. J. & Kamvar, Z. N. Best practices for population genetic analyses. Phytopathology 107, 1000–1010 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watkinson, A. & Powell, J. Seedling recruitment and the maintenance of clonal diversity in plant populations—A computer simulation of Ranunculus repens. J. Ecol. 81, 707–717 (1993).

    Article 

    Google Scholar 

  • Balloux, F., Lehmann, L. & de Meeus, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: A r package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guretzky, J., Anderson, A. & Fehmi, J. Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Res. 16, 51–61 (2006).

    Google Scholar 

  • Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. NeoBiota 8, 53–60 (2009).

    Google Scholar 

  • Karrer, G. Das österreichische Ragweed Projekt—übertragbare Erfahrungen. The Austrian Ragweed Project—Experiences and Generalisations. Julius-Kühn-Archiv 445, 27–33 (2014).

    Google Scholar 

  • Lemke, A., Buchholz, S., Kowarik, I., Starfinger, U. & von der Lippe, M. Interaction of traffic intensity and habitat features shape invasion dynamics of an invasive alien species (Ambrosia artemisiifolia) in a regional road network. NeoBiota 64, 155–175 (2021).

    Article 

    Google Scholar 

  • Orlić, M., Gačić, M. & La Violette, P. E. The currents and circulation of the Adriatic Sea. Oceanol. Acta 15, 109–124 (1992).

    Google Scholar 

  • Fumanal, B., Chauvel, B., Sabatier, A. & Bretagnolle, F. Variability and cryptic heteromorphism of Ambrosia artemisiifolia seeds: What consequences for its invasion in France?. Ann. Bot. 100, 305–313 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González, L. et al. An Atlantic Odissey: The fate of invading propagules across the coastline of the Iberian Peninsula. In 15th Ecology and Management of Alien Plant Invasions (EMAPi) Book of Abstracts: Integrating Research, Management and Policy (eds Pyšek, P. et al.) 24 (Institute of Botany, Czech Academy of Sciences, 2019).

    Google Scholar 

  • Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8, 541–552 (2006).

    Article 

    Google Scholar 

  • Halkett, F., Simon, J.-C. & Balloux, F. Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol. Evol. 20, 194–201 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Gradual loss of genetic diversity of Ambrosia artemisiifolia L. populations in the invaded range of central Serbia. Genetika 46, 255–268 (2014).

    Article 

    Google Scholar 

  • Suehs, C. M., Affre, L. & Médail, F. Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. Genetic diversity and introgression. Heredity 92, 31–40 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stoeckel, S. et al. Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol. Ecol. 15, 2109–2118 (2005).

    Article 

    Google Scholar 

  • Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58, 1891–1900 (2004).

    PubMed 

    Google Scholar 

  • Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Hewitt, A., Rymer, P., Holford, P., Morris, E. C. & Renshaw, A. Evidence for clonality, breeding system, genetic diversity and genetic structure in large and small populations of Melaleuca deanei (Myrtaceae). Aust. J. Bot. 67, 36–45 (2019).

    Article 

    Google Scholar 

  • Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novak, S. J. & Mack, R. N. Genetic bottlenecks in alien plant species: influences of mating systems and introduction dynamics. In Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F. et al.) 201–228 (Sinauer Associates, 2005).

    Google Scholar 

  • Karnkowski, W. Pest Risk Analysis and Pest Risk Assessment for the territory of the Republic of Poland (as PRA area) on Ambrosia spp., updated version. (Torun, 2001).

  • Karrer, G. et al. Ausbreitungsbiologie und Management einer extrem allergenen, eingeschleppten Pflanze – Wege und Ursachen der Ausbreitung von Ragweed (Ambrosia artemisiifolia) sowie Möglichkeiten seiner Bekämpfung. (Final Report, BMLFUW, Vienna, Austria). https://dafne.at/projekte/ragweed (2011). Accessed 10 August 2022.

  • Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).

    Article 

    Google Scholar 

  • Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plants mating. Annu. Rev. Ecol. Syst. 41, 193–213 (2010).

    Article 

    Google Scholar 

  • McKey, D., Elias, M., Pujol, B. & Duputiè, A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 186, 318–332 (2010).

    Article 
    PubMed 

    Google Scholar 

  • WFO Ambrosia psilostachya DC. http://www.worldfloraonline.org/taxon/wfo-0000137200 (accessed 21 July 2022).

  • Tomasello, S., Stuessy, T. F., Oberprieler, C. & Heubl, G. Ragweeds and relatives: Molecular phylogenetics of Ambrosiinae (Asteraceae). Mol. Phylogenet. Evol. 130, 104–114 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to Acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).

    Article 

    Google Scholar 

  • Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harper, J. L. Population Biology of Plants (Academic Press, 1977).

    Google Scholar 

  • Lambertini, C. et al. Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genet. 11(52), 1–18. https://doi.org/10.1186/1471-2156-11-52 (2010).

    Article 
    CAS 

    Google Scholar 

  • Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, A. H. D., Feldman, M. W. & Nevo, E. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96, 523–536 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Article 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kropf, M., Comes, H. P. & Kadereit, J. W. An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol. Ecol. 18, 697–708 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).

    Article 

    Google Scholar 

  • Jombart, T. adegenet: A r package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

    Book 
    MATH 

    Google Scholar 

  • Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diversity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    Article 

    Google Scholar 

  • Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    3 Questions: Antje Danielson on energy education and its role in climate action