Abstract
The Niepołomice Forest, though relatively natural, is affected by air pollutants transported from nearby urban areas. To assess the impact of air pollution, we analyzed the bioaccumulation of elements (Ca, Cd, Cu, Fe, Hg, Pb, S, Zn) in thalli of Hypogymnia physodes (L.) Nyl., together with oxidative stress biomarkers (SOD, TBARS) and thallus condition, at 15 sites during heating and non-heating seasons. Seasonal variability was observed: Cd and TBARS were higher in non-heating season (0.97 µg·g⁻¹ and 0.95 mmol·g⁻¹ FM respectively), while S increased during heating season (1331 µg·g⁻¹), suggesting emissions from fuel combustion. Spatial differences were most pronounced for Cd and Zn. In the western part of the forest, H. physodes was absent at some sites, and lichens showed elevated Pb and Cu concentrations with increased SOD activity, indicating strong traffic-related pollution. In the east, thalli contained a high proportion of degenerated algae, associated with elevated Cd, Hg, and S, as well as other stressors. Overall, element concentrations were comparable to values reported from other regions of Poland. The study highlights that even seemingly natural forests are subject to significant pollution pressure. Combining chemical data with biomarkers offers deeper insight into the effects of toxic elements on lichen bioindicators.
Data availability
The data are available in Open Research Data Repository of Krakow Universities RODBUK: https://doi.org/10.24917/VYJKFU.
References
Weiner, J., Fredro-Boniecki, S., Reed, D., Maclean, A. & Strong, M. Niepołomice Forest – a GIS analysis of ecosystem response to industrial pollution. Environ. Pollut. 98 (3), 381–388. https://doi.org/10.1016/S0269-7491(97)00152-8 (1997).
Wojewódzki Inspektorat Ochrony Środowiska w Krakowie. Raport o stanie środowiska w województwie małopolskim w. [Report on the state of the environment in the Małopolskie Voivodeship in 2016.]. Wojewódzki Inspektorat Ochrony Środowiska w Krakowie. (2017) (2016).
Kiszka, J. Lichenoindykacja obszaru województwa krakowskiego. [Licheno-indication of the area of the Cracow voivodeship]. Studia Ośrodka Dokumentacji Fizjograficznej. 18, 201–212 (1990).
Kiszka, J. & Grodzińska, K. Lichen flora and air pollution in the niepolomice forest (S Poland) in 1960 – 200. Biol. (Bratislava). 59 (1), 25–37 (2004). ISSN 0006-3088.
Grabowski, A. Zmiany morfologiczne koron sosny w Puszczy Niepołomickiej. [Morphological changes of pine crowns in the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 357–367 (1981).
Grodzińska, K. Zawartość Siarki w ogólnej w Szpilkach Sosny Zwyczajnej (Pinus silvestris) z Puszczy Niepołomickiej. [Total sulphur content of Scots pine (Pinus silvestris) pins from the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 293–301 (1981).
Grodzińska, K., Godzik, B., Darowska, E. & Pawłowska, B. Concentration of heavy metals in trophic chains of Niepołomice forest. S Pol. Ekologia Polska. 35 (2), 327–344 (1987).
Grodzińska, K., Szarek-Łukaszewska, G., Frontasyeva, M., Pavlov, S. S. & Gudorina, S. F. Multielement concentration in mosses in the forest influenced by industrial emissions (Niepołomice Forest, S Poland) at the end of the 20th century. Pol. J. Environ. Stud. 14 (2), 165–172 (2005).
Godzik, B. & Szarek, G. Heavy metals in mosses from the Niepołomice Forest, Southern Poland – changes in 1975–1992. Fragmenta Floristica Et Geobotanica. 38 (1), 199–208 (1993).
Godzik, B. & Szarek-Łukaszewska, G. Concentrations of heavy metals in Moehringia trinervia (Caryophyllaceae) in the Niepołomice forest (S Poland) – changes from 1984 to 1999. Pol. Bot. Stud. 19, 43–47 (2005).
Kapusta, P., Stanek, M., Szarek-Łukaszewska, G. & Godzik, B. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere 230, 29–39 (2019).
Kiszka, J. Wpływ emisji miejskich i przemysłowych na florę porostów (Lichenes) Krakowa i Puszczy Niepołomickiej. [Influence of urban and industrial emissions on the lichen flora (Lichenes) of Kraków and the Niepołomice Forest]. Prace Monograficzne Wyższej Szkoły Pedagogicznej W Krakowie. 19, 5–32 (1977).
Kiszka, J. Lichens. In: K. Grodzińska (Ed.). Acidification of forest environment (Niepołomice Forest) caused by SO2 emissions from steel mills (Final report on investigations from the period July 1.1976-June 30.). Institute of Botany Polish Academy of Sciences, Cracow: 86–89. (1980).
Kapusta, P., Szarek-Łukaszewska, G. & Kiszka, J. Spatial analysis of lichen species richness in a disturbed ecosystem (Niepołomice Forest, S Poland). Lichenologist 36 (3–4), 249–260 (2004).
Seaward, M. R. D. Lichens and sulphur dioxide air pollution: field studies. Environ. Reviews. 1 (2). https://doi.org/10.1139/a93-007 (1993).
Purvis, O. W. & Pawlik-Skowrońska, B. Lichens and metals. Br. Mycological Soc. Symposia Ser. 27, 175–200. https://doi.org/10.1016/S0275-0287(08)80054-9 (2008).
Boruah, T., Devi, H. & Sarkar, S. Lichen as bio indicators. In: (eds Das, A. K., Sharma, A., Kathuria, D., Ansari, M. J. & Bhardwaj, G.) Chemistry, Biology and Pharmacology of Lichen: 289–304. John Wiley & Sons Ltd. https://doi.org/10.1002/9781394190706.ch18 (2024).
Mota, L. M., Bravo, J. V. M. & Pereira, B. B. Urban environmental risk assessment through biomonitoring: a multivariate approach using Mangifera indica, lichens, and air pollutants. Environ. Pollut. 385, 127102. https://doi.org/10.1016/j.envpol.2025.127102 (2025).
Bąbelewska, A., Musielińska, R. & Ciesielski, W. Bioindykacyjna Ocena Stopnia zagrożenia Metalami ciężkimi Zbiorowisk leśnych Załęczańskiego Parku Krajobrazowego Przy Wykorzystaniu zdolności Kumulacji Plech Porostu Hypogymnia physodes L. [Bioindically rating of heavy metals hazard association for land forests of the załęcze landscape park with the use of cumulation capacity of the Hypogymnia physodes L]. Prace Naukowe Akademii Im Jana Długosza W Częstochowie: Technika Informatyka Inżynieria Bezpieczeństwa. 6, 279–496. https://doi.org/10.16926/tiib.2018.06.35 (2018).
Kłos, A. et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in Southern and north-eastern Poland. Sci. Total Environ. 627, 438–449. https://doi.org/10.1016/j.scitotenv.2018.01.211 (2018).
Bahinskyi, L., Świsłowski, P., Isinkaralar, O., Isinkaralar, K. & Rajfur, M. Low-cost monitoring of airborne heavy metals using lichen bioindicators: insights from Opole, Southern Poland. Atmosphere 16 (5), 576. https://doi.org/10.3390/atmos16050576 (2025).
Jóźwiak, M. Kumulacja metali ciężkich i zmiany morfologiczne w plechach porostu Hypogymnia physodes (L.)Nyl. [Accumulation of heavy metals and morphological changes in thalli of Hypogymnia physodes (L.)Nyl.) lichen]. Monit. Środowiska Przyrodniczego. 8, 51–56 (2007).
Daimari, R. et al. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India. Environ. Monit. Assess. 193 (101). https://doi.org/10.1007/s10661-021-08897-3 (2021).
Kumari, K., Kumar, V., Nayaka, S., Saxena, G. & Sanyal, I. Physiological alterations and heavy metal accumulation In the transplanted lichen Pyxine cocoes (Sw.) Nyl. In Lucknow city, Uttar Pradesh. Environ. Monit. Assess. 196, 84. https://doi.org/10.1007/s10661-023-12256-9 (2024).
Sujetovienė, G. & Česynaitė, J. Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors. J. Toxicol. Environ. Health. 84 (7), 273–278. https://doi.org/10.1080/15287394.2020.1862006 (2020).
Osyczka, P., Chowaniec, K. & Skubała, K. Membrane lipid peroxidation in lichens determined by the TBARS assay as a suitable biomarker for the prediction of elevated level of potentially toxic trace elements in soil. Ecol. Ind. 146, 109910. https://doi.org/10.1016/j.ecolind.2023.109910 (2023).
Maring, T., Kumar, S., Jha, A. K., Kumar, N. & Pandey, S. P. Airborne particulate matter and associated heavy metals: a review. Macromolecular Symposia. 407, 2100487. https://doi.org/10.1002/masy.202100487 (2023).
Bačkor, M. & Fahselt, D. Lichen photobionts and metal toxicity. Symbiosis (Rehovot). 46 (1), 1–10 (2008).
Álvarez, R. et al. Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb. Ecol. 69, 698–709. https://doi.org/10.1007/s00248-014-0524-0 (2015).
Lucadamo, L., Gallo, L. & Corapi, A. Detection of air quality improvement within a suburban district (southern Italy) by means of lichen biomonitoring. Atmospheric Pollution Res. 13 (3), 101346. https://doi.org/10.1016/j.apr.2022.101346 (2022).
Thakur, M., Bhardwaj, S., Kumar, V. & Rodrigo-Comino, J. Lichens as effective bioindicators for monitoring environmental changes: a comprehensive review. Total Environ. Adv. 9, 200085. https://doi.org/10.1016/j.teadva.2023.200085 (2024).
Masindi, V., Mkhonza, P. & Tekere, M. Sources of heavy metals pollution. In: Inamuddin, Ahamed, M.I., Lichtfouse, E., Altalhi, T. (Eds.). Remediation of heavy metals. environmental chemistry for a sustainable world 70. Springer, Cham: 419–454. (2021). https://doi.org/10.1007/978-3-030-80334-6_17
Ručová, D. et al. Investigation of calcium forms in lichens from travertine sites. Plants 11, 620. https://doi.org/10.3390/plants11050620 (2022).
Matei, E. et al. Heavy metals in particulate matter—trends and impacts on environment. Molecules 30 (7), 1455. https://doi.org/10.3390/molecules30071455 (2025).
Charlesworth, S., De Miguel, E. & Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health. 33, 103–123. https://doi.org/10.1007/s10653-010-9325-7 (2011).
Alloway, B. J. Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental Pollution 22. Dordrecht, The Netherlands: Springer. (2013).
Turhan, S. B., Oruc, I. & Ozdemir, H. Impact of heating season on the soil pollution in Kirklareli Province of Turkey. Environ. Monit. Assess. 193, 209. https://doi.org/10.1007/s10661-021-09002-4 (2021).
Frati, L. & Brunialti, G. Recent trends and future challenges for lichen biomonitoring in forests. Forests 14 (1), 647. https://doi.org/10.3390/f14030647 (2023).
Kiszka, J. & Porosty Kotliny, S. Część I. Porosty okręgu Puszczy Niepołomickiej [The lichens of the Sandomierz Lowland. Part I: lichens of Niepołomice forest district]. Fragmenta Floristica Et Geobotanica. 10 (4), 527–564 (1964).
Kiszka, J. Bioindykacja środowiska przyrodniczego na przykładzie porostów w Krakowie i Puszczy Niepołomickiej. [Bioindication of the natural environment on the example of lichens of Cracow and the Niepołomice Forest]. In: Grodziński, W., Juszczyk, W., Kiszka, J., Medwecka-Kornaś, A. (Eds.). Problemy ekologiczne i fizjologiczne w ochronie środowiska makroregionu Południowego. [Ecological and physiological problems in the protection of the environment of the Southern macro-region]. Sympozjum „Człowiek i Środowisko, Sesja XXX-lecia PRL: 11–17. (1974).
Kiszka, J. Porosty Rezerwatu Lipówka w Puszczy Niepołomickiej [The lichens in the forest reserve of Lipówka in the Niepołomice Forest]. Studia Nat. Seria A. 17, 149–158 (1978).
Kiszka, J. Flora porostów (Lichenes) Puszczy Niepołomickiej. [Flora of lichens (Lichenes) of the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 335–356 (1981).
Gazda, A. & Szlaga, A. Obce Gatunki Drzewiaste w północnym kompleksie Puszczy Niepołomickiej [Alien tree species in the Northern part of the Niepołomice Forest]. Sylwan 152 (4), 58–67 (2008).
Godzik, B. & Piechnik, Ł. Puszcza Niepołomicka – zrównoważona gospodarka leśna a ochrona bogactwa przyrodniczego. [The Niepołomice forest – sustainable forest management and protection of natural wealth]. 58 Zjazd Polskiego Towarzystwa Botanicznego. [58th Congress of the Botanical Society]. Przewodnik Sesji Terenowych: 183–213 (2019).
Climate-Data. org. Klimat: Niepołomice. Climate-Data.org. https://pl.climate-data.org/europa/polska/lesser-poland-voivodeship/niepołomice-10403/. [Access 10-05-2025]. (2025)sea.
Betleja, L. Badania morfologii plech Hypogymnia physodes (L.) Nyl. w płatach pni sosny (Pinus silvestris) w borach woj. Katowickiego. [Studies on the morphology of Hypogymnia physodes (L.) Nyl. thalli in pine (Pinus silvestris) trunk sections in forests in the Katowice Province]. In: Lipnicki, L. (Ed.). V Zjazd Lichenologów Polskich, Porosty (Lichenes) Pszczewskiego PK. [5th Congress of Polish Lichenologists, Lichens Pszczewski PK]. Instytut Badań i Ekspertyz Naukowych, Gorzów Wielkopolski: 95–101. (1989).
Bielecki, K. & Kulczycki, G. Modyfikacja metody Buttersa i chenery’ego oznaczenia Siarki ogólnej w roślinach i glebie. [Modification of Butters-Chenery method for determination of total sulfur in plants and soil]. Przemysł Chemiczny. 91 (5), 688–691 (2012).
Gawrońska, K., Romanowska, E., Miszalski, Z. & Niewiadomska, E. Limitation of C3–CAM shift in the common ice plant under high irradiance. J. Plant Physiol. 170 (2), 129–135. https://doi.org/10.1016/j.jplph.2012.09.019 (2013).
Egger, R., Schlee, D. & Turk, R. Changes of physiologicaland biochemical parameters in the lichen Hypogymnia physodes (L) Nyl. Due to the action of air pollutants—a field study. Phyton 34, 229–242 (1994).
Bradford, M. M. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0 (1970).
Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 (1), 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 (1971).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (2020). https://www.R-project.org/
Kassambara, A. & Mundt, F. Factoextra Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. (2020).
Mazerolle, M. J. AICcmodavg Model selection and multimodel inference based on (Q)AIC(c). R Package, version 2.2-2. (2019). https://cran.r-project.org/ package = AICcmodavg.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Pebesma, E. Simple features for R: standardized support for Spatial vector data. R J. 10 (1), 439–446. https://doi.org/10.32614/RJ-2018-009 (2018).
Pebesma, E. & Bivand, R. Spatial Data Science With Applications in R. Chapman & Hall. (2023). https://r-spatial.org/book/
Bivand, R., Nowosad, J. & Lovelace, R. _spData Datasets for spatial analysis. (2025). https://doi.org/10.32614/CRAN.package.spData
Ben-Shachar, M., Lüdecke, D. & Makowski, D. Estimation of effect size indices and standardized parameters. J. Open. Source Softw. 5 (56), 2815. https://doi.org/10.21105/joss.02815 (2020).
Lenth, R. & Piaskowski, J. _emmeans Estimated marginal means, aka least-squares means. (2025). https://doi.org/10.32614/CRAN.package.emmeans
Białońska, D. & Dayan, F. E. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J. Chem. Ecol. 31, 2975–2991. https://doi.org/10.1007/s10886-005-8408-x (2005).
Migaszewski, Z. M., Gałuszka, A., Świercz, A. & Kucharzyk, J. Element concentrations in soils and plant bioindicators in selected habitats of the holy cross mountains. Pol. Water Air Soil. Pollution. 129, 369–386. https://doi.org/10.1023/A:1010308517145 (2001).
Sawicka-Kapusta, K., Zakrzewska, M., Dudzik, P. & Gołuszka, K. Zanieczyszczenia Powietrza Stacji Bazowych ZMSP w 2011 Roku Na Podstawie Koncentracji Metali ciężkich i Siarki w plechach Porostu Hypogymnia physodes Zebranych z naturalnego środowiska. [Air pollution of the base stations of the integrated monitoring of natural environment in 2011 on the basis of heavy metals and sulphur concentration in lichen Hypogymnia physodes collected from natural environment]. Monit. Środowiska Przyrodniczego. 16, 49–57 (2014).
Nimis, P. L., Lazzarin, G., Lazzarin, A. & Skert, N. Biomonitoring of trace elements with lichens in Veneto (NE Italy). Sci. Total Environ. 255 (1–3), 97–111. https://doi.org/10.1016/S0048-9697(00)00454-X (2000).
Johansson, L. S., Tullin, C., Leckner, B. & Sjövall, P. Particle emissions from biomass combustion in small combustors. Biomass Bioenerg. 25 (4), 435–446. https://doi.org/10.1016/S0961-9534(03)00036-9 (2003).
Sippula, O., Hokkinen, J., Puustinen, H., Yli-Pirilä, P. & Jokiniemi, J. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmospheric Environ. 43 (32), 4855–4864. https://doi.org/10.1016/j.atmosenv.2009.07.022 (2009).
Świetlik, R., Trojanowska, M. & Rabek, P. Distribution patterns of Cd, Cu, Mn, Pb and Zn in wood fly Ash emitted from domestic boilers. Chem. Speciat. Bioavailab. 35 (1), 63–71. https://doi.org/10.3184/095422912X13497968675047 (2012).
Cui, W. et al. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol. 6, 586–594. https://doi.org/10.1007/s40789-019-00281-4 (2019).
Hutton, M. Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 7 (1), 9–24. https://doi.org/10.1016/0147-6513(83)90044-1 (1983).
Nzihou, A. & Stanmore, B. The fate of heavy metals during combustion and gasification of contaminated biomass – A brief review. J. Hazard. Mater. 256–257, 56–66. https://doi.org/10.1016/j.jhazmat.2013.02.050 (2013).
Ciężka, M. M. et al. The coupled study of metal concentrations and electron paramagnetic resonance (EPR) of lichens (Hypogymnia physodes) from the Świętokrzyski National Park—environmental implications. Environ. Sci. Pollut. Res. 25, 25348–25362. https://doi.org/10.1007/s11356-018-2586-x (2018).
Wiseman, R. D. & Wadleigh, M. A. Lichen response to changes in atmospheric sulphur: isotopic evidence. Environ. Pollut. 116 (2), 235–241. https://doi.org/10.1016/S0269-7491(01)00133-6 (2002).
Lin, C. K. et al. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. Sci. Rep. 8, 2611. https://doi.org/10.1038/s41598-018-20404-2 (2018).
Shikhovtsev, M. Y. et al. Features of Temporal variability of the concentrations of gaseous trace pollutants in the air of the urban and rural areas in the Southern Baikal region (East Siberia, Russia). Appl. Sci. 14 (18), 8327. https://doi.org/10.3390/app14188327 (2024).
Ciężka, M. M. et al. The multi-isotope biogeochemistry (S, C, N and Pb) of Hypogymnia physodes lichens: air quality approach in the Świętokrzyski National Park, Poland. Isot. Environ. Health Stud. 58 (4–6), 340–362. https://doi.org/10.1080/10256016.2022.2110591 (2022).
Uchwała nr XVIII/243/16 Sejmiku Województwa Małopolskiego z dnia 15.01.2016. W sprawie wprowadzenia na obszarze Gminy Miejskiej Kraków ograniczeń w zakresie eksploatacji instalacji, w których następuje spalanie paliw. [Resolution No. XVIII/243/16 of the Sejmik of the Małopolskie Voivodeship of 15.01.2016. On the introduction in the area of the Municipality of Krakow of restrictions on the operation of installations in which fuel is burned]. Poland. (2016).
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 (9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 (2002).
Bačkor, M. & Loppi, S. Interactions of lichens with heavy metals. Biol. Plantetarum. 53, 214–222. https://doi.org/10.1007/s10535-009-0042-y (2009).
Santos, A. M. D. et al. Impacts of cd pollution on the vitality, anatomy and physiology of two morphologically different lichen species of the genera Parmotrema and Usnea. Evaluated Under Experimental Conditions Divers. 14, 926. https://doi.org/10.3390/d14110926 (2022).
Aslan, A. et al. The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activites. Afr. J. Agric. Res. 6 (7), 1698–1706. https://doi.org/10.5897/AJAR10.331 (2011).
Gómez, S., Vergara, M., Rivadeneira, B., Rodríguez, J. & Carpio, A. Use of lichens as bioindicators of contamination by agrochemicals and metals. Environ. Sci. Pollut. Res. 31, 49214–49226. https://doi.org/10.1007/s11356-024-34450-z (2024).
Szarek-Łukaszewska, G., Grodzińska, K. & Braniewski, S. Heavy metal concentration in the moss Pleurozium schreberi in the Niepołomice Forest, poland: changes during 20 years. Environ. Monit. Assess. 79, 231–237. https://doi.org/10.1023/A:1020226526451 (2002).
Olivia, S. R. & Rautio, P. Could ornamental plants serve as passive biomonitors in urban area? J. Atmos. Chem. 49, 137–148. https://doi.org/10.1007/s10874-004-1220-0 (2004).
Hjortenkrans, D. S., Bergbäck, B. G. & Häggerud, A. V. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41 (15), 5224–5230. https://doi.org/10.1021/es070198o (2007).
Jeong, H. Toxic metal concentrations and Cu–Zn–Pb isotopic compositions in tires. J. Anal. Sci. Technol. 13 (2). https://doi.org/10.1186/s40543-021-00312-3 (2022).
Al-Sabbagh, T. A. & Shreaz, S. Impact of lead pollution from vehicular traffic on highway-side grazing areas: challenges and mitigation policies. Int. J. Environ. Res. Public Health. 22 (2). https://doi.org/10.3390/ijerph22020311 (2025).
Branquinho, C., Brown, D. H., Máguas, C. & Catarino, F. Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ. Exp. Bot. 37 (2–3), 95–105. https://doi.org/10.1016/S0098-8472(96)01038-6 (1997).
Kováčik, J., Dresler, S., Babula, P., Hladký, J. & Sowa, I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 156, 591–599. https://doi.org/10.1016/j.plaphy.2020.10.007 (2020).
Ministerstwo Klimatu i Środowiska. Krajowy bilans emisji SO2, NOX, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 1990–2018. Raport syntetyczny. [National emissions balance of SO2, NOX, CO, NH3, NMLZO, dust, heavy metals and TZO for the period 1990–2018. Synthesis report]. Krajowy Ośrodek Inwentaryzacji i Raportowania Emisji, Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa. (2020).
Zeedijk, H. & Velds, C. A. The transport of sulphur dioxide over a long distance. Atmospheric Environ. 7 (9), 849–862. https://doi.org/10.1016/0004-6981(73)90107-8 (1973).
Marumoto, K., Hayashi, M. & Takami, A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmos. Environ. 117, 147–155. https://doi.org/10.1016/j.atmosenv.2015.07.019 (2015).
Jackson, T. A. Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions—a critical review and evaluation of the published evidence. Environ. Reviews. 5 (2). https://doi.org/10.1139/a97-005 (1997).
Xiao, H., Carmichael, G. R., Durchenwald, J., Thornton, D. & Bandy, A. Long-range transport of SOx and dust in East Asia during the PEM B experiment. J. Geophys. Research: Atmos. 102 (D23), 28589–28612. https://doi.org/10.1029/96JD03782 (1997).
Sigler, J. M., Lee, X. & Munger, W. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ. Sci. Technol. 37 (19), 4343–4347. https://doi.org/10.1021/es026401r (2003).
Qu, Y., An, J., He, Y. & Zheng, J. An overview of emissions of SO2 and nox and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. J. Environ. Sci. 44, 13–25. https://doi.org/10.1016/j.jes.2015.08.028 (2016).
Inspektorat Ochrony Środowiska. Krajowy raport mozaikowy o stanie środowiska. [National mosaic report on the state of the environment.] Wojewódzki Inspektorat Ochrony Środowiska Kraków, Kraków. (2007).
Ministerstwo Klimatu i Środowiska. Krajowy bilans emisji SO2, NOX, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 1990–2019. Raport syntetyczny. [National emissions balance of SO2, NOX, CO, NH3, NMLZO, dust, heavy metals and TZO for the period 1990–2019. Synthesis report]. Krajowy Ośrodek Inwentaryzacji i Raportowania Emisji, Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa. (2021).
Główny Inspektorat Ochrony Środowiska. Regionalny Wydział monitoringu Środowiska w Krakowie, departament monitoringu Środowiska. Roczna Ocena jakości Powietrza w województwie małopolskim: Raport wojewódzki Za Rok 2019. [Annual air quality assessment in the Małopolska province: provincial report for 2019]. Główny Inspektorat Ochrony Środowiska (2020).
Hernansanz-Agustín, P. & Enríquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415. https://doi.org/10.3390/antiox10030415 (2021).
Acknowledgements
The study was founded through the statutory research subvention of UKEN: BS-472/G/2018 “Ocena stanu środowiska naturalnego Puszczy Niepołomickiej w oparciu o porost Hypogymnia physodes (Nyl)”. [Assessment of the natural environment of the Niepołomice Forest based on the lichen Hypogymnia physodes (Nyl.)].
Funding
The study was founded through the statutory research subvention of UKEN: BS-472/G/2018 “Ocena stanu środowiska naturalnego Puszczy Niepołomickiej w oparciu o porost Hypogymnia physodes (Nyl)”. [Assessment of the natural environment of the Niepołomice Forest based on the lichen Hypogymnia physodes (Nyl.)].
Author information
Authors and Affiliations
Contributions
RK: Conceptualization, Funding acquisition, Investigation, Methodology, Writing – review & editing. IW: Formal analysis, Validation, Visualization, Writing – original draft.DK: Validation, Visualization, Writing – original draft. MA: Methodology, Investigation, Writing – review & editing. LB: Methodology, Investigation, Writing – review & editing. KG: Methodology, Investigation, Writing – review & editing. KK: Visualization, Writing – review & editing. ŁJB: Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Supervision, Writing – review & editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Kościelniak, R., Wiśniowska, I., Kadłub, D. et al. Temporal and spatial variation in the composition of the lichen Hypogymnia physodes from the Niepołomice Forest (Poland).
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31463-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31463-7
Source: Ecology - nature.com
