in

Exploring local and regional contribution to airborne bacterial communities in the Antarctic Peninsula


Abstract

Understanding microbial dispersion in the atmosphere is essential for studying microbial biogeography and ecosystem dynamics under global change. Airborne bacterial communities, shaped by exchanges between atmosphere and Earth’s surface, can originate from diverse sources and vary with meteorological conditions and air mass trajectories. In this study, we assessed airborne microbial communities in Antarctica at regional and local scales. Air samples were collected during the austral summer at two Antarctic Specially Protected Areas (ASPAs): Byers Peninsula (Livingston Island, South Shetland Islands) and Avian Island (Marguerite Bay). Bacterial composition was analysed through 16S rRNA gene sequencing using amplicon sequence variants (ASVs). Additionally, back-trajectories of the sampled air parcels were simulated with HYSPLIT. A core community was identified in 80% of Byers Peninsula samples, representing 57.91% of total ASVs. Notably, 79.4% of ASVs matched soil bacteria from the same location, suggesting a strong influence of local sources. Communities from Byers Peninsula and Avian Island showed low overall similarity. However, one sample from Byers resembled the Avian sample, likely due to similar air mass back-trajectories. These findings suggest that airborne bacterial communities are shaped by both local ecosystems, and broader regional or continental processes, such as long-range trajectories carrying microorganisms from distant locations.

Similar content being viewed by others

General decline in the diversity of the airborne microbiota under future climatic scenarios

Aerial transport of bacteria by dust plumes in the Eastern Mediterranean revealed by complementary rRNA/rRNA-gene sequencing

Environmental gradients shape microbial community structure and ecosystem processes in Antarctic lakes on King George Island

Data availability

The air sequences generated in this study are available in GenBank under BioProject accession number PRJNA1165500.

References

  1. Šantl-Temkiv, T. et al. Microbial ecology of the atmosphere. FEMS Microbiol. Rev. 46(4), fuac009. https://doi.org/10.1093/femsre/fuac009 (2022).

    Google Scholar 

  2. King-Miaow, K. et al. Airborne microorganisms in Antarctica: transport, survival and establishment. In The ecological role of microorganisms in the antarctic environment (ed. Castro-Sowinkski, S.) (Springer Switzerland, Cham, 2019). https://doi.org/10.1007/978-3-030-02786-5.

    Google Scholar 

  3. Zhai, Y. et al. A review on airborne microorganisms in particulate matters: composition, characteristics, and influence factors. Environ. Int. 113, 74–90. https://doi.org/10.1016/j.envint.2018.01.007 (2018).

    Google Scholar 

  4. Rodó, X. et al. Microbial richness and air chemistry in aerosols above the PBL confirm 2,000-km long-distance transport of potential human pathogens. PNAS 121(38), e2404191121. https://doi.org/10.1073/pnas.2404191121 (2024).

    Google Scholar 

  5. Wilkinson, D. M., Koumoutsaris, S., Mitchell, E. A. D. & Bey, I. Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 39(1), 89–97. https://doi.org/10.1111/j.1365-2699.2011.02569.x (2012).

    Google Scholar 

  6. Galbán, S., Justel, A., González, S. & Quesada, A. Local meteorological conditions, shape and desiccation influence dispersal capabilities for airborne microorganisms. STOTEN 780, 146653. https://doi.org/10.1016/j.scitotenv.2021.146653 (2021).

    Google Scholar 

  7. Malard, L. A. et al. Aerobiology over the Southern Ocean: Implications for bacterial colonization of Antarctica. Environ. Int. 169, 10749. https://doi.org/10.1016/j.envint.2022.107492 (2022).

    Google Scholar 

  8. Kobziar, L. N. et al. Wildland fire smoke alters the composition, diversity and potential atmospheric function of microbial life in the aerobiome. ISME Comm 2(8), 1–9. https://doi.org/10.1038/s43705-022-00089-5 (2022).

    Google Scholar 

  9. Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res. Atmos. 124(10), 5579–5588. https://doi.org/10.1029/2018JD029597 (2019).

    Google Scholar 

  10. Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front. Microbiol. 10, 1572. https://doi.org/10.3389/fmicb.2019.01572 (2019).

    Google Scholar 

  11. Tignat-Perrier, R. et al. Seasonal shift in airborne microbial communities. STOTEN 716, 137129. https://doi.org/10.1016/j.scitotenv.2020.137129 (2020).

    Google Scholar 

  12. Tignat-Perrier, R. et al. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci. Rep. 9, 14441. https://doi.org/10.1038/s41598-019-51073-4 (2019).

    Google Scholar 

  13. Lang-Yona, N. et al. Terrestrial and marine influence on the atmospheric bacterial diversity over the North Atlantic and Pacific Oceans. Comm. Earth Environ. 3(121), 1–10. https://doi.org/10.1038/s43247-022-00441-6 (2022).

    Google Scholar 

  14. Archer, S. D. J. et al. Contribution of soil bacteria to the atmosphere across biomes. STOTEN 871, 162137. https://doi.org/10.1016/j.scitotenv.2023.162137 (2023).

    Google Scholar 

  15. Pearce, D. A. et al. Aerobiology over Antarctica: A new initiative for atmospheric ecology. Front. Microbiol. 7(16) https://doi.org/10.3389/fmicb.2016.00016 (2016).

    Google Scholar 

  16. Uetake, J. et al. Airborne bacteria confirm the pristine nature of the Southern Ocean boundary layer. PNAS 117(24), 13275–13282. https://doi.org/10.1073/pnas.2000134117 (2020).

    Google Scholar 

  17. Matsuoka, K. et al. Quantarctica. Norwegian Polar Institute https://doi.org/10.21334/NPOLAR.2018.8516E961 (2018).

    Google Scholar 

  18. Convey, P. Terrestrial ecosystem responses to climate change in the Antarctic. In “Fingerprints” of climate change: Adapted behaviour and shifting species ranges (eds Walter, G. R. et al.) 17–42 (Springer, Nueva York, 2001).

    Google Scholar 

  19. Finlay, B. J. & Clarke, K. J. Ubiquitous dispersal of microbial species. Nature 400, 828 https://doi.org/10.1038/23616 (1999).

    Google Scholar 

  20. De Witt, R. & Bouvier, T. ‘Everything is everywhere, but the environment selects’; What did Baas Becking and Beijerinck really say?. Environ. Microbiol. 8(4), 755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x (2006).

    Google Scholar 

  21. Dickey, J. R. et al. The utility of macroecological rules for microbial biogeography. Front. Ecol. Evol. 9, 633155 https://doi.org/10.3389/fevo.2021.633155 (2021).

    Google Scholar 

  22. Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4(6), 925–932. https://doi.org/10.1038/s41564-019-0370-4 (2019).

    Google Scholar 

  23. Cao, Y. et al. Airborne bacterial community diversity source and function along the Antarctic Coast. STOTEN 765, 142700 https://doi.org/10.1016/j.scitotenv.2020.142700 (2021).

    Google Scholar 

  24. Parro, V. et al. Microbial biogeography along a 2578 km transect on the East Antarctic Plateau. Nat. Commun. 16, 775. https://doi.org/10.1038/s41467-025-55997-6 (2025).

    Google Scholar 

  25. Quesada, A., Camacho, A., Rochera, C. & Velázquez, D. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica. Polar Sci. 3(3), 181–187. https://doi.org/10.1016/j.polar.2009.05.003 (2009).

    Google Scholar 

  26. ATCM. Management Plan for Antarctic Specially Protected Area (ASPA) No. 126 Byers Peninsula, Livingston Island, South Shetland Islands. Berlin: ATCM (2022).

  27. ATCM. Management plan for antarctic specially protected area (ASPA) No. 117 Avian Island, Marguerite Bay, Antarctic Peninsula. Helsinki: ATCM (2023).

  28. Pearce, D. A. et al. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol. Ecol. 69(2), 143–157. https://doi.org/10.1111/j.1574-6941.2009.00706.x (2009).

    Google Scholar 

  29. Gat, D., Mazar, Y., Cytryn, E. & Rudich, Y. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 51(12), 6709–6718. https://doi.org/10.1021/acs.est.7b00362 (2017).

    Google Scholar 

  30. González-Martín, C. et al. Airborne bacterial community composition according to their origin in Tenerife Canary Islands. Front. Microbiol. 14(12), 732961. https://doi.org/10.3389/fmicb.2021.732961 (2021).

    Google Scholar 

  31. Foong, C. P., Wong, C. M. V. L. & Gonzalez, M. Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands). Polar Sci. 4(2), 263–273. https://doi.org/10.1016/j.polar.2010.05.010 (2010).

    Google Scholar 

  32. Zeigler, D. R. The Family Paenibacillaceae. In The prokaryotes (eds Rosenberg, E., DeLong, E. F. et al.) (Springer, Berlin, 2016). https://doi.org/10.13140/RG.2.1.1949.5289.

    Google Scholar 

  33. Ivanova, E. P. & Webb, H. K. The family Granulosicoccaceae. In The prokaryotes (eds Rosenberg, E., DeLong, E. F. et al.) (Springer, Berlin, 2014).

    Google Scholar 

  34. Balmonte, J. P., Teske, A. & Arnosti, C. Structure and function of high Arctic pelagic, particle-associated and benthic bacterial communities. Environ. Microbiol. 20(8), 2941. https://doi.org/10.1111/1462-2920.14304 (2018).

    Google Scholar 

  35. Signori, C. N., Pellizari, V. H., Enrich-Prast, A. & Sievert, S. M. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the Northen Antarctic Peninsula. Deep-Sea Res. II Top. Stud. Oceanogr. 149, 150–160. https://doi.org/10.1016/j.dsr2.2017.12.017 (2018).

    Google Scholar 

  36. Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37(3), 303–335. https://doi.org/10.1111/1574-6976.12007 (2013).

    Google Scholar 

  37. Almela, P., Casero, C., Justel, A. & Quesada, A. Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiol. Ecol. 98(4), fiac029. https://doi.org/10.1093/femsec/fiac029 (2022).

    Google Scholar 

  38. Rochera, C. & Camacho, A. Limnology and aquatic microbial ecology of Byers Peninsula: a main freshwater biodiversity hotspot in Maritime Antarctica. Diversity 11(10), 201. https://doi.org/10.3390/d11100201 (2019).

    Google Scholar 

  39. Almela, P., Velázquez, D., Rico, E., Justel, A. & Quesada, A. Marine vertebrates impact the bacterial community composition and food webs of Antarctic microbial mats. Front. Microbiol. 13, 841175. https://doi.org/10.3389/fmicb.2022.841175 (2022).

    Google Scholar 

  40. Kim, M., Cho, H. & Lee, W. L. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. J. Microbiol. 58(12), 1018–1026. https://doi.org/10.1007/s12275-020-0524-3 (2020).

    Google Scholar 

  41. Hoyles, L., Foster, G., Falsen, E., Thomson, L. F. & Collins, M. D. Facklamia miroungae sp. nov., from a juvenile Southern elephant seal (Mirounga leonina). Int. J. Syst. Evol. MicroBiol. 51, 1401–1403. https://doi.org/10.1099/00207713-51-4-1401 (2001).

    Google Scholar 

  42. Vrbovská, V. et al. Characterization of Staphylococcus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini. Microorganisms 8, 204 https://doi.org/10.3390/microorganisms8020204 (2020).

    Google Scholar 

  43. Zeng, Y.-X., Li, H.-R., Han, W. & Luo, W. Comparison of gut microbiota between gentoo and Adélie penguins breeding sympatrically of Antarctic Ardley Island as revealed by faecal DNA sequencing. Diversity 13(10), 500. https://doi.org/10.3390/d13100500 (2021).

    Google Scholar 

  44. Malard, L. A., Convey, P. & Pearce, D. A. Daily turnover of airborne bacterial communities in the sub-antarctic. Environ. Microbiome 20, 91. https://doi.org/10.1186/s40793-025-00745-y (2025).

    Google Scholar 

  45. Chong, C.-W., Pearce, D. A. & Convey, P. Emerging spatial patterns in Antarctic prokaryotes. Front. Microbiol. 6, 1058. https://doi.org/10.3389/fmicb.2015.01058 (2015).

    Google Scholar 

  46. Xue, F. et al. Characterization of airborne bacteria and fungi at a land-sea transition site in Southern China. STOTEN 849, 157786. https://doi.org/10.1016/j.scitotenv.2022.157786 (2022).

    Google Scholar 

  47. Wang, Y. et al. Examining the vertical heterogeneity of aerosols over Southern Great Plains. ACP 23, 15671–15691. https://doi.org/10.5194/acp-23-15671-2023 (2023).

    Google Scholar 

  48. Tong, Y. & Lighthart, B. The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley. Oregon. Aerosol Sci. Technol. 32(5), 393–403. https://doi.org/10.1080/027868200303533 (2000).

    Google Scholar 

  49. Joung, Y. S., Ge, Z. & Buie, C. R. Bioaerosol generation by raindrops on soil. Nat. Commun. 8, 14668. https://doi.org/10.1038/ncomms14668 (2017).

    Google Scholar 

  50. Del Moral, A. et al. Are recently deglaciated areas of both poles colonised by the same bacteria?. FEMS Microbiol. Lett. 368(3), 011. https://doi.org/10.1093/femsle/fnab011 (2021).

    Google Scholar 

  51. Bañón, M., Justel, A., Velázquez, D. & Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica). Antarct. Sci. 25(2), 146–156. https://doi.org/10.1017/S0954102012001046 (2013).

    Google Scholar 

  52. Almela, P., Justel, A. & Quesada, A. Heterogeneity of microbial communities in soils from the Antarctic Peninsula Region. Front. Microbiol. 12, 628792. https://doi.org/10.3389/fmicb.2021.628792 (2021).

    Google Scholar 

  53. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27(2), 105–117. https://doi.org/10.1016/j.tim.2018.11.003 (2019).

    Google Scholar 

  54. Yu, Y., Lee, C., Kim, J. & Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89(6), 670–679. https://doi.org/10.1002/bit.20347 (2005).

    Google Scholar 

  55. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    Google Scholar 

  56. Flyvbjerg, R. C. & Edgar, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformation 31(21), 3476–3482. https://doi.org/10.1093/bioinformatics/btv401 (2014).

    Google Scholar 

  57. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2- feature-classifier plugin. Microbiome 6(90), 1–17. https://doi.org/10.1186/s40168-018-0470-z (2018).

    Google Scholar 

  58. Pedregosa, F. et al. Scikit-learn: Machine learning in Phyton. JMLR 12(85), 2828–2830 (2011).

    Google Scholar 

  59. Oksanen, J. et al. Vegan: Community ecology package. R package vegan, version 2.2-1. Worl. Agro Cent 3, 7–81 (2015).

    Google Scholar 

  60. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org. (2016).

  61. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2008).

    Google Scholar 

  62. Tipton, L. et al. Hawaiian fundal amplicon sequence variants reveal otherwise hidden biogeography. Fungal Microbiol. 83(1), 48–57. https://doi.org/10.1007/s00248-021-01730-x (2021).

    Google Scholar 

  63. Matias Rodrigues, J., Schmidt, T. S. B., Tackmann, J. & Von Mering, C. MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis. Bioinform. 33(23), 3808–3810. https://doi.org/10.1093/bioinformatics/btx517 (2017).

    Google Scholar 

  64. Stein, A. F. et al. NOAA’S HYSPLIT atmospheric transport and dispersion modelling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 (2015).

    Google Scholar 

  65. Von Engeln, A. & Teixeira, J. A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Clim. 26(17), 6575–6590. https://doi.org/10.1175/JCLI-D-12-00385.1 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the members of field teams from MICROAIRPOLAR projects Sergi González and David Velázquez, Unidad de Tecnología Marina (UTM-CSIC), and crews of BIO Hespérides (Spanish Navy) and B/O Sarmiento de Gamboa (CSIC) for the logistic support in Antarctic campaigns. The authors acknowledge the computer resources, technical expertise and assistance provided by the Centro de Computación Científica at the Universidad Autónoma de Madrid (CCC-UAM), the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model, the Norwegian Polar Institute for the Quantarctica package, and Agencia Estatal de Meteorología (AEMET) for providing meteorological data from Juan Carlos I station. Special thanks to Pablo Sanz and Sergi González for their support in obtaining back-trajectories of air masses.

Funding

This work was supported by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), Grants PID2020-116520RB-I00 and CTM2016-79741-R. SG was supported by a PIPF-contract fellowship (PIPF-2022/ECO-25833) from Comunidad Autónoma de Madrid government’s (Spain).

Author information

Authors and Affiliations

Authors

Contributions

S.G.: Conceptualization, data curation, formal analysis, investigation, methodology, software, visualization, writing—original draft, writing—review and editing. P.A.: Conceptualization, methodology, writing—review and editing. A.Q.: Conceptualization, investigation, methodology, funding acquisition, project administration, resources, supervision, validation, writing—review and editing. A.J.: Conceptualization, investigation, methodology, funding acquisition, project administration, resources, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to
Antonio Quesada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Galbán, S., Almela, P., Quesada, A. et al. Exploring local and regional contribution to airborne bacterial communities in the Antarctic Peninsula.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-32162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-32162-z

Keywords

  • Aerobiology
  • Antarctica
  • Bacteria
  • Core community
  • Biogeography
  • Air mass back-trajectories


Source: Ecology - nature.com

Coral relocation supports survival and growth in an urban reef of the Maldives

Study: More eyes on the skies will help planes reduce climate-warming contrails

Back to Top