in

Continent-wide view of genomic diversity and divergence in the wolves of Asia


Abstract

Grey wolves (Canis lupus) in Asia hold most of the species’ genetic diversity and many endangered populations. However, a clear understanding of the evolutionary history of wolves in Asia is lacking, hindering their conservation. We used 98 whole genomes of wolves across Eurasia to better resolve their evolutionary history and conservation status. The strongest barriers to gene flow coincided with boundaries separating the three major wolf lineages – Indian, Tibetan, and Holarctic. Wolves in the central Asian mountain ranges belonged to the Holarctic lineage and share little ancestry with the nearby Tibetan lineage. In contrast, wolves from eastern Asia share population-wide ancestry with the Tibetan lineage, which may reflect an unsampled lineage similar to the Tibetan lineage. Wolves from southwestern Asia share population-wide ancestry with the Indian lineage, likely due to old (>6 kya) admixture events. Long-term declines and recent inbreeding have left Indian and Tibetan wolves with some of the lowest levels of genetic diversity and highest realized genetic loads. In contrast, adjacent populations have some of the highest genetic diversity, due in part to admixture along contact zones. Our study highlights southern regions of Asia as hotspots of wolf diversity and the need to conserve these remaining populations.

Data availability

All raw reads are publicly available on the National Center for Biotechnology Information Sequence Read Archive under Project ID PRJNA1285574, with accession numbers SRR35174885- SRR34347608. Results and tables of the analyses can be found on GitHub: https://github.com/hennelly/Asia_wide_wolf_genomics.

Code availability

The bioinformatic scripts can be found on GitHub: https://github.com/hennelly/Asia_wide_wolf_genomics.

References

  1. Hogg, C. J. Translating genomic advances into biodiversity conservation. Nat. Rev. Genet. 25, 362–373 (2024).

    Google Scholar 

  2. Fredrickson, R. J., Siminski, P., Woof, M. & Hedrick, P. W. Genetic rescue and inbreeding depression in Mexican wolves. Proc. R. Soc. 274, 2365–2371 (2007).

    Google Scholar 

  3. Battilani, D. et al. Beyond population size: whole-genome data reveal bottleneck legacies in the peninsular Italian wolf. J. Hered. 116, 10–23 (2025).

    Google Scholar 

  4. Schweizer, R. M. et al. Genetic subdivision and candidate genes under selection in North American gray wolves. Mol. Ecol. 25, 380–402 (2015).

    Google Scholar 

  5. Kardos, M. et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2, 124–131 (2018).

    Google Scholar 

  6. Robinson, J. A. et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 5, eaau0757 (2018).

    Google Scholar 

  7. Taron, U. H. et al. A sliver of the past: the decimation of the genetic diversity of the Mexican wolf. Mol. Ecol. 30, 6340–6354 (2021).

    Google Scholar 

  8. Lobo, D., Lopez-Bao, J. V. & Godinho, R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: a temporal genomic approach. Mol. Ecol. 32, 5986–5999 (2023).

    Google Scholar 

  9. Werhahn, G., Senn, H., Macdonald, D. W. & Sillero-Zubiri, C. The diversity of genus Canis challenges conservation biology: a review of available data on Asian wolves. Front. Ecol. Evol. 10, 10.3389 (2022). 2022.

    Google Scholar 

  10. Wang, M. S. et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 37, 2616–2629 (2020).

    Google Scholar 

  11. Hennelly, L. M. et al. Ancient divergence of Indian and Tibetan wolves revealed by recombination-aware phylogenomics. Mol. Ecol. 30, 6687–6700 (2021).

    Google Scholar 

  12. Wang, M. S. et al. Genome sequencing of a gray wolf from Peninsular India provides new insights into the evolution and hybridization of gray wolves. Genome Biol. Evol. 2, evac012 (2022).

  13. Bergstrom, A. et al. Grey wolf genomic history reveals a dual ancestry of dogs. Nature 607, 313–320 (2022).

    Google Scholar 

  14. Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the Genus Canis. Curr. Biol. 28, P3441–P3449 (2018).

    Google Scholar 

  15. Hennelly, L. M. et al. Genomic analysis of wolves from Pakistan clarifies boundaries among three divergent wolf lineages. J. Heredit. 115, 339–348 (2023).

  16. Mallil, K. et al. Population genetics of the African wolf (Canis lupaster) across its range: first evidence of hybridization with domestic dogs in Africa. Mamm. Biol. 100, 645–658 (2020).

    Google Scholar 

  17. Niemann, J. et al. Extended survival of Pleistocene Siberian wolves into the early 20th century on the island of Honshu. iScience 24, 101904 (2020).

    Google Scholar 

  18. Ramos-Madrigal, J. et al. Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Curr. Biol. 31, 198–206 (2021).

    Google Scholar 

  19. Segawa, T. et al. Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan. Curr. Biol. 32, 2494–2504 (2022).

    Google Scholar 

  20. Marcus, J., Ha, W., Barber, R. F. & Novembre, J. Fast and flexible estimation of effective migration surfaces. eLife 10, e61927 (2021).

    Google Scholar 

  21. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Google Scholar 

  22. Zhang, C., Rabiee, M., Sayarri, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).

    Google Scholar 

  23. Burbrink, F. T., DeBaun, D., Foley, N. M. & Murphy, W.J. Recombination-aware phylogenomics. Trends Ecol. Evol. 40, 900–912 (2025).

  24. Pease, J. B. & Hahn, M. W. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution 67, 2376–2384 (2013).

    Google Scholar 

  25. Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 565–660 (2018).

    Google Scholar 

  26. Martin, S., Davey, H., Salazar, C. & Jiggins, C. D. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol. 17, e2006288 (2019).

    Google Scholar 

  27. Schaffner, S. T. The X chromosome in population genetics. Nat. Rev. Genet. 5, 43–51 (2004).

    Google Scholar 

  28. Webster, T. H. & Sayres, M. A. W. Genomic signatures of sex-biased demography: progress and prospects. Curr. Opin. Genet. Dev. 31, 62–71 (2016).

    Google Scholar 

  29. de Jong, M. J. et al. Range-wide whole-genome resequencing of the brown bear reveals drivers of intraspecies divergence. Commun. Biol. 6, 153 (2023).

    Google Scholar 

  30. de Jong, M. J. et al. Red deer resequencing reveals the importance of sex chromosomes for reconstructing Late Quaternary events. Mol. Biol. Evol. 42, 1–17 (2025).

    Google Scholar 

  31. Nachman, M. W. & Payseur, B. A. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. B 367, 409–421 (2012).

    Google Scholar 

  32. Li, G., Figueiro, H. V., Eizirik, E. & Murphy, W. J. Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. Mol. Biol. Evol. 36, 2111–2126 (2019).

    Google Scholar 

  33. vonHoldt, B. M. et al. Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast. Mol. Ecol. 31, 5440–5454 (2021).

    Google Scholar 

  34. Feng, C., Wang, J., Liston, A. & Kang, M. Recombination variation shapes phylogeny and introgression in wild diploid strawberries. Mol. Biol. Evol. 40, msad049 (2023).

    Google Scholar 

  35. Jiang, Z. et al. Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae). BMC Biol. 22, 49 (2024).

    Google Scholar 

  36. Monthey, J. D. & Spellman, G. M. Recombination rate variation shapes genomic variability of phylogeographic structure in a widespread North American songbird (Aves: Certhia americana). Mol. Phylogenet. Evol. 196, 108088 (2024).

    Google Scholar 

  37. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. fastsimcoal2: Demographic inference under complex evolutionary scenarios. Bioinformatics 37, 4842–4849 (2021).

    Google Scholar 

  38. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Google Scholar 

  39. Mazet, O., Rodriguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of being structured: instantaneous coalescence rates and human evolution—lessons from ancestral population size inference?. Heredity 116, 362–371 (2015).

    Google Scholar 

  40. Hanghoj, K., Molke, I., Andersen, P. A., Manica, A. & Korneliussen, T. S. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, 1–9 (2019).

  41. Narasimhan, V. et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749–2751 (2016).

    Google Scholar 

  42. Thompson, E. A. Variation in meiosis, across genomes, and in populations. Genetics 194, 301–326 (2013).

    Google Scholar 

  43. Gomez-Sanchez, D. et al. On the path to extinction: inbreeding and admixture in a declining grey wolf population. Mol. Ecol. 27, 3599–3612 (2018).

    Google Scholar 

  44. Bertorelle, G. et al. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492–503 (2022).

    Google Scholar 

  45. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

  46. Heffelfinger, J. R., Nowak, R. M. & Paetkau, D. Clarifying historical range to aid recovery of the Mexican wolf. J. Wildl. Manag. 81, 766–777 (2017).

    Google Scholar 

  47. Mathur, S. & DeWoody, J. A. Genetic load has potential in large populations but is realized in small inbred populations. Evol. Appl. 14, 1540–1557 (2021).

    Google Scholar 

  48. Dussex, N., Morales, H. E., Grossen, C., Dalen, L. & Oosterhout, C. Purging and accumulation of genetic load in conservation. Trends Ecol. Evol. 38, P961–P969 (2023).

    Google Scholar 

  49. Smeds, L. & Ellegren, H. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol. Ecol. 32, 1567–1580 (2022).

    Google Scholar 

  50. Iurino, D. A. et al. A Middle Pleistocene wolf from central Italy provides insights on the first occurrence of Canis lupus in Europe. Sci. Rep. 12, 2882 (2022).

  51. Sotnikova, M. & Rook, L. Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene. Q. Int.212, 86–97 (2010).

  52. Gelabert, P. et al. Genome-scale sequencing and analysis of human, wolf, and bison DNA from 25,000-year-old sediment. Curr. Biol. 31, 3564–3574 (2021).

    Google Scholar 

  53. Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173 (2021).

    Google Scholar 

  54. Wang, G. D. et al. Genomic approaches reveal an endemic subpopulation of gray wolves in Southern China. iScience 20, 110–118 (2019).

    Google Scholar 

  55. Wang, L. et al. The geographical distribution of grey wolves (Canis lupus) in China: a systematic review. Zool. Res. 37, 315–326 (2016).

    Google Scholar 

  56. Pinxian, W. & Xiangjun, S. Last glacial maximum in China: comparison between land and sea. Catena 23, 341–535 (1994).

    Google Scholar 

  57. Dayan, T., Simberloff, D., Tchernov, E. & Yom-Tov, Y. Canine car-nassial: character displacement in the wolves, jackals, and foxes ofIsrael. Biol. J. Linn. Soc. 45, 313–331 (1992).

    Google Scholar 

  58. Kurten, B. The carnivora of the Palestine caves. Acta Zool. Fenn. 107, 74 (1965).

    Google Scholar 

  59. Mashkour, M. et al. Carnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the Zagros. Int. J. Osteoarchaeol. 19, 678–694 (2008).

    Google Scholar 

  60. Plessis, S. J., Blaxter, M., Koepfli, K. P., Chadwick, E. A. & Hailer, F. Genomics reveals complex population history and unexpected diversity of Eurasian otters (Lutra lutra) in Britain relative to genetic methods. Mol. Biol. Evol. 40, msad207 (2023).

    Google Scholar 

  61. Statham, M. J. et al. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange, and distinct demographic histories. Mol. Ecol. 23, 4813–4830 (2014).

    Google Scholar 

  62. Alvares, F. et al. Old World Canis spp. with taxonomic ambiguity: workshop conclusions and recommendations. Canid News 21 http://hdl.handle.net/10138/327703 (2019).

  63. Krofel, M., Hatlauf, J., Bogdanowicz, W., Cambell, L. A. D. & Godinho, R. Towards resolving taxonomic lineages in wolf, dog, and jackal of Africa, Eurasia, and Australasia. J. Zool. 316, 155–168 (2022).

    Google Scholar 

  64. Sillero-Zubiri, C. Family Canidae. In D.E. Wilson and R.A. Mittermeier (Eds.), The Handbook of the Mammals of the World (Lynx Edicions in association with Conservation International and IUCN, 2009).

  65. Sharma, D. K., Maldonado, J. E., Jhala, Y. V. & Fleischer, R. C. Ancient wolf lineages in India. Proc. R. Soc. B 271, S1–S4 (2004).

    Google Scholar 

  66. Werhahn, G. et al. Himalayan wolf distribution and admixture based on multiple genetic markers. J. Biogeogr. 47, 1272–1285 (2020).

    Google Scholar 

  67. Jhala, Y. V., Saini, S., Kumar, S. & Qureshi, Q. Distribution, status, and conservation of the Indian Peninsula wolf. Front. Ecol. Evol. 10, 814966 (2022).

    Google Scholar 

  68. Sheikh, K. M. & Molur, S. Status and Red List of Pakistan’s Mammals. Based on the Conservation Assessment and Management Plan 312 (IUCN Pakistan, 2003).

  69. Hennelly, L. M. et al. Canis lupus ssp. pallipes (The IUCN Red List of Threatened Species, 2025).

  70. Werhahn, G. et al. Himalayan Wolf: Canis lupus spp. chanco (The IUCN Red List of Threatened Species, 2023).

  71. Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl. Acad. Sci. USA 118, e2104642118 (2021).

    Google Scholar 

  72. Sowerby, A. C. China’s Natural History: A Guide to the Shanghai Museum (Royal Asiatic Society of Great Britain and Ireland, North China Branch, 1936).

  73. Fellowes, J. R., Chan, B. P. L., Lau, C. M. N., Sai-Chit, N. & Siu, G. L. P. 2003. Report of Rapid Biodiversity Assessment at Shiwandashan National Nature Reserve and National Forest Park, Southwest Guanxi, China, 2000–2001 (Kadoorie Farm and Botanic Garden in collaboration with Guangxi Forestry Department, Guangxi Institute of Botany, South China Normal University, 2003).

  74. Bonsen, G. T. et al. Navigating complex geopolitical landscapes: challenges in conserving the endangered Arabian wolf. Biol. Conserv. 296, 110655 (2024).

    Google Scholar 

  75. Caroe, C. et al. Single-tube library preparation for degraded DNA. Methods Ecol. Evol. 9, 410–419 (2017).

    Google Scholar 

  76. Mak, S. S. T. et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platform for paleogenomic sequencing. GigaScience 6, 1013 (2017).

    Google Scholar 

  77. Gilbert, M. T. P. et al. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317, 1927–1930 (2007).

    Google Scholar 

  78. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

    Google Scholar 

  79. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Google Scholar 

  80. Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).

    Google Scholar 

  81. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  82. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Google Scholar 

  83. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    Google Scholar 

  84. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from Next Generation sequencing data. Genetics 3, 693–702 (2013).

    Google Scholar 

  85. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Google Scholar 

  86. Danecek, P. et al. The variant call format and VCFtool. Bioinformatics 27, 2156–2158 (2011).

    Google Scholar 

  87. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Google Scholar 

  88. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Google Scholar 

  89. Nguyen, L. T., Schmidt, H. A., Haeseler, A. & Minh, B. Q. IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    Google Scholar 

  90. Auton, A. et al. Genetic recombination is targeted towards gene promoter regions in dogs. PLoS Genet. 9, e1003984 (2013).

    Google Scholar 

  91. Smeds, L. et al. Whole-genome analysis provide no evidence for dog introgression in Fennoscandian wolf populations. Evol. Appl. 14, 721–734 (2021).

    Google Scholar 

  92. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Google Scholar 

  93. Martin, S. H. & Belleghem, S. M. V. Exploring evolutionary relationships across the genome using topology weighting. Genetics 1, 429–438 (2017).

    Google Scholar 

  94. Delaneau, O., Howie, B., Cox, A. J., Zagury, J. F. & Marchini, J. Haplotype estimation using sequencing reads. AJGH 93, P687–P696 (2013).

    Google Scholar 

  95. Danecek, P. et al. Twelve years of SAMtools and BCFTools. GigaScience 10, giab008 (2021).

    Google Scholar 

  96. Hilgers, L. et al. Avoidable false PSMC population size peaks occur across numerous studies. Curr. Biol. 35, 927–930 (2025).

    Google Scholar 

  97. Koch, E. M. et al. De novo mutation rate estimation in wolves of known pedigree. Mol. Biol. Evol. 36, 2536–2547 (2019).

    Google Scholar 

  98. Mech, D. L. & Barber-Meyer, S. Use of erroneous wolf generation time in assessments of domestic dog and human evolution. Sci. Lett. http://science.sciencemag.org/content/352/6290/1228/tab-e-letters (2017).

Download references

Acknowledgements

L.M.H. thanks the National Science Foundation Postdoctoral Research Fellowship (award number 2208950) for funding and support. The Norwegian Environment Agency (project 18088069) provided funding and support for sequencing efforts on newly sequenced wolf genomes. Ç.H.Ș. thanks to Fondation Segré and the Sigrid Rausing Trust for providing the majority of the funding for this project, H. Batubay Özkan and Barbara Watkins for their support of the Biodiversity and Conservation Ecology Lab at the University of Utah, and Bilge Bahar, Seha İşmen, Ömer Koç, Ömer Külahçıoğlu, Burak Över, Emin Özgür, Suna Reyent, and Ceren Sağlamer for supporting this project. Türkiye’s Department of Nature Conservation and National Parks and the Ministry of Agriculture and Forestry granted the permit for Türkiye (No. 72784983-488.04-114100). P.H. thanks the Technology Agency of the Czech Republic (project SS07010447) for support. We thank the Museum of the Institute of Plant and Animal Ecology UB RAS for access to their collections.

Author information

Authors and Affiliations

Authors

Contributions

L.M.H. conceived and designed the project with guidance from S.G., M.H.S.S., and B.N.S. C.S.O., M.H.S.S., and N.F.G.M. conducted laboratory work; H.F., G.S., B.H., F.H., S.P.E.H., C.K., Ç.H.Ş., P.K., H.S., M.H.S.S., L.P., P.H., A.Y., and M.T.P.G. provided logistics, field work, wolf samples, and sequencing efforts; L.M.H. led data analysis with assistance from B.R.P., A.N., X.S., N.F.G.M., and L.M.H. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to
Lauren M. Hennelly.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Yi-Jyun Luo and Michele Repetto.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Materials

Supplementary Data 1

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Hennelly, L.M., Parreira, B.R., Noble, A. et al. Continent-wide view of genomic diversity and divergence in the wolves of Asia.
Commun Biol (2025). https://doi.org/10.1038/s42003-025-09379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42003-025-09379-9


Source: Ecology - nature.com

Cesium accumulation in nodules is involved in mitigating cesium transfer to shoot

Coupling models to assess impacts of land and carbon changes on sustainable ecological safety networks of Gui’an New Area, China

Back to Top