Abstract
Predators influence ecosystem functioning through consumptive and non-consumptive effects. Recent studies suggest that predators can also be an essential source of limiting nutrients in ecosystems such as coral reefs, potentially influencing prey ecology through nutrient input via their excreta. With rising commercial fishery, mesopredatory fishes are being selectively harvested from reefs. Yet, there is incomplete knowledge of the consequences of this extraction on essential ecosystem processes. Using field experiments and observations, we examined how mesopredatory fishes influence herbivory along a fishing-induced mesopredatory fish biomass gradient in the Lakshadweep Archipelago in the northern Indian Ocean. We found that mesopredatory fish excreta have greater proportion of phosphorus than nitrogen. Along the gradient, primary and secondary productivity increased, after accounting for pelagic nutrient subsidies. Further, herbivory rates increased with increasing mesopredator biomass, while prey anti-predator response remained unchanged. Our results suggest that mesopredator-induced alterations of nutrient stoichiometry stimulate primary and secondary productivity and enhance herbivory in phosphorus-limited coral reefs, particularly in systems experiencing mesopredator release following selective fishing of apex predators. Our study shifts focus from the traditional top-down role of predators, highlighting an overlooked bottom-up pathway by which mesopredators can influence ecosystem functioning. Global decline of predators could modify ecosystem processes in ways that are yet unknown, leaving them increasingly vulnerable to future disturbances.
Similar content being viewed by others
Predator mass mortality events restructure food webs through trophic decoupling
Safeguarding nutrients from coral reefs under climate change
Predator exposure early in life shapes behavioral development and individual variation in a clonal fish
Data availability
All data supporting the findings and conclusions of this article will be made publicly available in the Zenodo data repository (https://doi.org/10.5281/zenodo.15143823) upon publication. Any additional information required to analyze the data will be made available by the corresponding author upon request.
References
Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).
Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).
Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).
Preisser, E. L., Bolnick, D. I. & Benard, M. E. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).
Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open. Ecol. J. 3, (2010).
Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
Laundre, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).
Tebbett, S. B., Faul, S. I. & Bellwood, D. R. Quantum of fear: herbivore grazing rates not affected by reef shark presence. Mar. Environ. Res. 196, 106442 (2024).
Davis, K., Carlson, P. M., Bradley, D., Warner, R. R. & Caselle, J. E. Predation risk influences feeding rates but competition structures space use for a common Pacific Parrotfish. Oecologia 184, 139–149 (2017).
Casey, J. M. et al. A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia 183, 161–175 (2017).
Allgeier, J. E., Yeager, L. A. & Layman, C. A. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94, 521–529 (2013).
Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).
Schmitz, O. J., Hawlena, D. & Trussell, G. C. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010).
Allgeier, J. E. et al. Anthropogenic versus fish-derived nutrient effects on seagrass community structure and function. Ecology 99, 1792–1801 (2018).
Appoo, J., Bunbury, N., Jaquemet, S. & Graham, N. A. J. Seabird nutrient subsidies enrich mangrove ecosystems and are exported to nearby coastal habitats. iScience. 27, (2024).
Appoo, J. et al. Seabird presence and seasonality influence nutrient dynamics of atoll habitats. Biotropica 56, e13354 (2024).
Benkwitt, C. E., Carr, P., Wilson, S. K. & Graham, N. A. J. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. R. Soc. B Biol. Sci. 289, 20220195 (2022).
Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).
Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).
Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).
Ferguson, S. H., Kingsley, M. C. S. & Higdon, J. W. Killer whale (Orcinus orca) predation in a multi-prey system. Popul. Ecol. 54, 31–41 (2012).
Palmer, M. S. et al. Dynamic landscapes of fear: Understanding spatiotemporal risk. Trends Ecol. Evol. 37, 911–925 (2022).
Ripple, W. J. & Beschta, R. L. Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience. 54, 755–766 (2004).
Trites, A. W., Deecke, V. B., Gregr, E. J., Ford, J. K. B. & Olesiuk, P. F. Killer Whales, whaling, and sequential megafaunal collapse in the North Pacific: A comparative analysis of the dynamics of marine mammals in Alaska and British Columbia following commercial whaling. Mar. Mamm. Sci. 23, 751–765 (2007).
Pearson, H. C. et al. Whales in the carbon cycle: can recovery remove carbon dioxide? Trends Ecol. Evol. 38, 238–249 (2023).
Archer, S. K. et al. Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling. Coral Reefs. 34, 19–23 (2015).
Friedlander, A. M. & DeMartini, E. E. Contrasts in density, size, and biomass of reef fishes between the Northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).
Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).
Singh, A., Wang, H., Morrison, W. & Weiss, H. Modeling fish biomass structure at near pristine coral reefs and degradation by fishing. J. Biol. Syst. 20, 21–36 (2012).
Ripple, W. J. & Beschta, R. L. Trophic cascades in yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).
Catano, L. B. et al. Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour. J. Anim. Ecol. 85, 146–156 (2016).
Bauman, A. G. et al. Fear effects and group size interact to shape herbivory on coral reefs. Funct. Ecol. 35, 1985–1997 (2021).
Gangal, M. et al. Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biol. Conserv. 260, 109195 (2021).
Benkwitt, C. E. et al. Nutrient connectivity via seabirds enhances dynamic measures of coral reef ecosystem function. PLoS Biol. 23, e3003222 (2025).
Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
Karkarey, R., Zambre, A., Isvaran, K. & Arthur, R. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation. BMC Ecol. 17, 10 (2017).
Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26, 2011–2016 (2016).
Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46 (2015).
Desbiens, A. A. et al. Revisiting the paradigm of shark-driven trophic cascades in coral reef ecosystems. Ecology 102, e03303 (2021).
Frisch, A. J. et al. Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs. 35, 459–472 (2016).
Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).
Madin, E. M. P. et al. Multi-Trophic species interactions shape Seascape-Scale coral reef vegetation patterns. Front. Ecol. Evol. 7, (2019).
Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl. Acad. Sci. 104, 8362–8367 (2007).
Madin, E. M. P., Madin, J. S. & Booth, D. J. Landscape of fear visible from space. Sci. Rep. 1, 14 (2011).
Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).
Littler, M. M., Littler, D. S. & Titlyanov, E. A. Comparisons of N- and P-limited productivity between high granitic Islands versus low carbonate atolls in the Seychelles archipelago: a test of the relative-dominance paradigm. Coral Reefs. 10, 199–209 (1991).
Shakya, A. W. & Allgeier, J. E. Water column contributions to coral reef productivity: overcoming challenges of context dependence. Biol. Rev. 98, 1812–1828 (2023).
Shantz, A. A., Ladd, M. C. & Burkepile, D. E. Algal nitrogen and phosphorus content drive inter- and intraspecific differences in herbivore grazing on a Caribbean reef. J. Exp. Mar. Biol. Ecol. 497, 164–171 (2017).
Bellwood, D. R. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29, 71–83 (2003).
Bellwood, D. R., Goatley, C. H. R., Brandl, S. J. & Bellwood, O. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc. R. Soc. B Biol. Sci. 281, 20133046 (2014).
Steneck, R. S., Bellwood, D. R. & Hay, M. E. Herbivory in the marine realm. Curr. Biol. 27, R484–R489 (2017).
Arthur, R., Done, T. J., Marsh, H. & Harriott, V. Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands. Coral Reefs. 25, 427–440 (2006).
Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl. Acad. Sci. U S A. 105, 16201–16206 (2008).
Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).
Pauly, D. & Palomares, M. L. Fishing down the marine food web: it is Far more pervasive than we thought. Bull. Mar. Sci. 76, (2005).
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).
Jaini, M., Advani, S., Shanker, K., Oommen, M. A. & Namboothri, N. History, culture, infrastructure and export markets shape fisheries and reef accessibility in India’s contrasting oceanic Islands. Environ. Conserv. 45, 41–48 (2018).
Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs. 33, 289–302 (2014).
Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).
El-Khaled, Y. C. et al. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated red sea reefs. Sci. Rep. 11, 11820 (2021).
Webb, A. E. et al. Quantifying functional consequences of habitat degradation on a Caribbean coral reef. Biogeosciences 18, 6501–6516 (2021).
Joy, A. et al. Biochemical composition of sedimentary organic matter in the coral reefs of Lakshadweep Archipelago, Indian ocean. Chem. Ecol. 35, 805–824 (2019).
Miller, M. W. & Sluka, R. D. Patterns of seagrass and sediment nutrient distribution suggest anthropogenic enrichment in Laamu Atoll, Republic of Maldives. Mar. Pollut. Bull. 38, 1152–1156 (1999).
Mohan, G. et al. Variations in seasonal phytoplankton assemblages as a response to environmental changes in the surface waters of Minicoy Island, Lakshadweep. Appl. Ecol. Environ. Sci. 9, 1024–1032 (2021).
Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 230A–2221 (1958).
Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).
Karkarey, R. et al. Wave exposure reduces herbivory in post-disturbed reefs by filtering species composition, abundance and behaviour of key fish herbivores. Sci. Rep. 10, 9854 (2020).
Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. B. Zooplankton, planktivorous Fish, and water currents on a windward reef face: great barrier reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527e6 (2019).
Mihalitsis, M., Morais, R. A. & Bellwood, D. R. Small predators dominate fish predation in coral reef communities. PLoS Biol. 20, e3001898 (2022).
Nair, R. et al. Fishing Patterns Shaped by History, Place, and Access Leave Lasting Ecological Signatures on Coral Reef Fish Assemblages. SSRN Scholarly Paper at https://doi.org/10.2139/ssrn.5382821 (2025).
Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).
Blanchette, A. et al. Damselfish Stegastes nigricans increase algal growth within their territories on shallow coral reefs via enhanced nutrient supplies. J. Exp. Mar. Biol. Ecol. null, null (2019).
Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).
Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2019).
Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Buñuel, X. et al. Indirect grazing-induced mechanisms contribute to the resilience of Mediterranean seagrass meadows to sea urchin herbivory. Oikos. 2023, e09520 (2023).
Kohli, M. et al. Grazing and climate change have site-dependent interactive effects on vegetation in Asian montane rangelands. J. Appl. Ecol. 58, 539–549 (2021).
Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
Kelkar, N., Arthur, R., Marba, N. & Alcoverro, T. Green turtle herbivory dominates the fate of seagrass primary production in the lakshadweep Islands (Indian Ocean). Mar. Ecol. Prog. Ser. 485, 235–243 (2013).
Anujan, K., Ratnam, J. & Sankaran, M. Chronic browsing by an introduced mammalian herbivore in a tropical Island alters species composition and functional traits of forest understory plant communities. Biotropica 54, 1248–1258 (2022).
Coverdale, T. C. et al. Large herbivores suppress liana infestation in an African savanna. Proc. Natl. Acad. Sci. 118, e2101676118 (2021).
Doherty, P. J. et al. High mortality during settlement is a population bottleneck for a tropical surgeonfish. Ecology 85, 2422–2428 (2004).
Karkarey, R., Alcoverro, T., Kumar, S. & Arthur, R. Coping with catastrophe: foraging plasticity enables a benthic predator to survive in rapidly degrading coral reefs. Anim. Behav. 131, 13–22 (2017).
Goatley, C. H. R. & Bellwood, D. R. Body size and mortality rates in coral reef fishes: a three-phase relationship. Proc. R. Soc. B Biol. Sci. 283, 20161858 (2016).
Dunic, J. C. & Baum, J. K. Size structuring and allometric scaling relationships in coral reef fishes. J. Anim. Ecol. 86, 577–589 (2017).
Bauman, A. G. et al. Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol. Lett. 15, 20190409 (2019).
Des Roches, S., Robinson, R. R., Kinnison, M. T. & Palkovacs, E. P. The legacy of predator threat shapes prey foraging behaviour. Oecologia 198, 79–89 (2022).
Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs. 22, 63–67 (2003).
Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2016).
Carlson, P. M., Davis, K., Warner, R. R. & Caselle, J. E. Fine-scale spatial patterns of Parrotfish herbivory are shaped by resource availability. Mar. Ecol. Prog. Ser. 577, 165–176 (2017).
Robinson, J. P. W. et al. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol. Evol. S0169534723003300 https://doi.org/10.1016/j.tree.2023.11.013 (2023).
Benkwitt, C. E. et al. Seabirds boost coral reef resilience. Sci. Adv. 9, eadj0390 (2023).
Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. 7, eabf3792 (2021).
Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLOS ONE. 10, e0118764 (2015).
Catano, L. B., Barton, M. B., Boswell, K. M. & Burkepile, D. E. Predator identity and time of day interact to shape the risk–reward trade-off for herbivorous coral reef fishes. Oecologia 183, 763–773 (2017).
Allgeier, J. E. The ecosystem ecology of coral reefs revisited. Annu. Rev. Ecol. Evol. Syst. 55, 251–370 (2024).
Allgeier, J. E. et al. Phylogenetic conservatism drives nutrient dynamics of coral reef fishes. Nat. Commun. 12, 5432 (2021).
Papastamatiou, Y. P. et al. Dynamic energy landscapes of predators and the implications for modifying prey risk. Funct. Ecol. 00, 1–10 (2023).
Rasher, D. B., Hoey, A. S. & Hay, M. E. Cascading predator effects in a Fijian coral reef ecosystem. Sci. Rep. 7, 15684 (2017).
Rizzari, J. R., Frisch, A. J. & Connolly, S. R. How robust are estimates of coral reef shark depletion? Biol. Conserv. 176, 39–47 (2014).
Robbins, W. D., Hisano, M., Connolly, S. R. & Choat, J. H. Ongoing collapse of coral-reef shark populations. Curr. Biol. 16, 2314–2319 (2006).
Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays. Nat. Commun. 14, 15 (2023).
Rizzari, J. R., Frisch, A. J., Hoey, A. S. & McCormick M. I. Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123, 829–836 (2014).
Divan Patel, F., Pinto, W., Dey, M., Alcoverro, T. & Arthur, R. Carbonate budgets in lakshadweep Archipelago bear the signature of local impacts and global climate disturbances. Coral Reefs. https://doi.org/10.1007/s00338-023-02374-8 (2023).
Arthur, R. Patterns and Processes of Reef Recovery and Human Resource Use in the Lakshadweep Islands, Indian Ocean (James Cook University, 2004).
Abramoff, M., Magalhães, P. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2003).
Tebbett, S. B. & Bellwood, D. R. Algal turf sediments on coral reefs: what’s known and what’s next. Mar. Pollut. Bull. 149, 110542 (2019).
Tebbett, S. B. & Bellwood, D. R. Sediments ratchet-down coral reef algal turf productivity. Sci. Total Environ. 713, 136709 (2020).
Tebbett, S. B., Goatley, C. H. R. & Bellwood, D. R. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and acanthurus nigrofuscus. Coral Reefs. 36, 803–813 (2017).
Tebbett, S. B., Goatley, C. H. R., Huertas, V., Mihalitsis, M. & Bellwood, D. R. A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues. R. Soc. Open. Sci. 5, 171111 (2018).
Marshell, A. & Mumby, P. J. Revisiting the functional roles of the surgeonfish acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs. 31, 1093–1101 (2012).
Marshell, A. & Mumby, P. J. The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. J. Exp. Mar. Biol. Ecol. 473, 152–160 (2015).
Parravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).
Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).
Karkarey, R. et al. Do risk-prone behaviours compromise reproduction and increase vulnerability of fish aggregations exposed to fishing? Biol. Lett. 20, 20240292 (2024).
Brandl, S. J. & Bellwood, D. R. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci. Rep. 5, 14556 (2023).
Froese, R. & Pauly, D. World Wide Web electronic publication. www.fishbase.org https://www.fishbase.se/summary/citation.php (2024).
Atkinson, M. J. Are coral reefs nutrients-limited? In Proceedings of 6th International Coral Reef Symposium, 1988, Vol. 1, 57–66 (1988).
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).
Morais, R. A., Patricio-Valerio, L., Narvaez, P., Parravicini, V. & Brandl, S. J. Rethinking darwin’s coral reef paradox and the ubiquity of marine oases. Curr. Biol. 35, 3241–3250e6 (2025).
Dey, M. et al. Local environmental filtering and frequency of marine heatwaves influence decadal trends in coral composition. Divers. Distrib. 31, e70043 (2025).
Schiettekatte, N. M. D. et al. Biological trade-offs underpin coral reef ecosystem functioning. Nat. Ecol. Evol. 6, 701–708 (2022).
Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs. 39, 1221–1231 (2020).
Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).
Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Fox, J. & Weisberg, S. An R Companion To Applied Regression (Sage, 2019).
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6. http://florianhartig.github.io/DHARMa/ (2022).
Breheny, P. & Burchett, W. Visualization of regression models using Visreg. R J. 9, 56–71 (2017).
Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open. Source Softw. 6, 3139 (2021).
Acknowledgements
We thank the Department of Environment and Forests, Union Territory of Lakshadweep, for the timely permit and support to conduct this study (F. No. 1/5/2023-E&F/1045). We thank NCBS – TIFR, Nature Conservation Foundation and Wildlife Conservation Society–India for their institutional, administrative and logistical support. We thank all our funders for the generous funding that made this work possible. We thank Siya Bhagat, Wenzel Pinto and Abdul Rauf for their assistance with data collection and Sidharth Sankaran for his help with transcribing the benthic photoquadrats. We thank Anwar Hussain, M.K. Ibrahim (Ummini) and everyone at ESMUC and LakScuba for their logistical support during the fieldwork. We are deeply grateful to the people of Bitra, Kadmat and Kavaratti for their unwavering support. We thank James Robinson and Renato Morais for their advice and assistance on the fish productivity analysis. We are grateful to Nick Graham, Casey Benkwitt, Jennifer Appoo, Mayank Kohli, Pritha Dey, Kulbhushansingh Suryawanshi, Mayuresh Gangal, Jayashree Ratnam and Siddhi Jaishankar for their critical input and feedback on different aspects and stages of the study.
Funding
Funding for this work was provided by the Department of Atomic Energy, Government of India to National Centre for Biological Sciences (Project Identification No: RTI 4006); Shri AMM Murugappa Chettiar Research Centre (MCRC), Ashraya Hasta Trust and Rohini Nilekani Philanthropies to RA; and National Geographic Society (Grant No: NGS 96905R-22) to RK. The Fisheries Society of the British Isles supported AP through a Travel Grant during his tenure at Lancaster University. AP was awarded the Infosys Travel Award by National Centre for Biological Sciences to attend and present the results of this study at the International Conference for Young Marine Researchers 2024, Bremen, Germany. The Spanish National Research Council supported TA through the Memorandum of Understanding between Centre D’Estudis Avançats de Blanes (CEAB, CSIC) and Nature Conservation Foundation (NCF).
Author information
Authors and Affiliations
Contributions
AP, RK, RA and TA conceptualized the study. AP, HT, RK, RA and TA designed the study, standardized methodology and collected data. AP, HT, RK and RA acquired funding for the study. AP and SP analyzed and summarized the data for the manuscript. AP curated and visualized the data and wrote the first draft. All authors contributed equally towards reviewing and approving the final draft.
Corresponding author
Ethics declarations
Permission statement
We confirm that the required permissions to conduct field work in the atolls of Lakshadweep Archipelago were obtained from the Department of Environment and Forests, Union Territory of Lakshadweep (F. No. 1/5/2023-E&F/1045). Should you need any further documentation or information, please feel free to contact the corresponding author.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this article
Cite this article
Paul, A., Thareja, H., Arthur, R. et al. Predators can facilitate herbivory in nutrient-limited marine ecosystems.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-34145-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-34145-6
Keywords
- Ecosystem functions
- Nutrient stoichiometry
- Bottom-up processes
- Predator-prey interactions
- Mesopredator release
- Coral reefs
Source: Ecology - nature.com
