Abstract
Coral reef ecosystems are being altered by rising ocean temperatures and increasing nutrient inputs, yet their combined influence on food-web structure is not well understood. Here we analyzed 130 coral reef food webs across the South China Sea, constructed from environmental DNA surveys integrated with trophic interactions. We grouped the food webs into surface-water, bottom-water and sediment habitats. Our analyses reveal pronounced structural differences among habitats: surface- and bottom-water webs exhibit significantly higher connectance and nestedness, whereas sediment webs are more compartmentalized. Using linear mixed-effects models, we find that temperature and productivity interact in nonlinear ways to shape food-web properties. In surface waters, higher temperature together with higher productivity tends to increase connectance, whereas in deeper waters the same conditions tend to lengthen trophic pathways and reduce stability. These results suggest that future environmental change may influence pelagic and benthic reef food webs in contrasting ways.
Data availability
The raw sequence data reported in this paper have been deposited in the China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA018229) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa.
References
Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing?. PLoS ONE 6, e25026 (2011).
Wong, A. S., Vrontos, S. & Taylor, M. L. An assessment of people living by coral reefs over space and time. Glob. Change Biol. 28, 7139–7153 (2022).
Souter, D. et al. Status of Coral Reefs of the World: 2020 Report (Global Coral Reef Monitoring Network, 2021).
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118 (2021).
Gove, J. M. et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 621, 536–542 (2023).
Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).
Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. Elem. Sci. Anthr. 5, 72 (2017).
Hering, D. et al. Managing aquatic ecosystems and water resources under multiple stress-An introduction to the MARS project. Sci. Total Environ. 503-504, 10–21 (2015).
Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Woesik, R. V. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).
Cook, K. M. et al. A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecol. Evol. 12, e8736 (2022).
Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).
Koester, A. et al. Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at remote Aldabra Atoll, Seychelles: insights from two survey methods. Front. Mar. Sci. 10, 1230717 (2023).
Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).
Zhao, H. et al. Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Sci. Total Environ. 774, 145017 (2021).
Pozas-Schacre, C. et al. Congruent trophic pathways underpin global coral reef food webs. Proc. Natl. Acad. Sci. USA 118, e2100966118 (2021).
Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).
Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M. & Brose, U. Temperature, predator–prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157 (2010).
Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).
Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B 367, 2935–2944 (2012).
Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).
Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Food web expansion and contraction in response to changing environmental conditions. Nat. Commun. 3, 1105 (2012).
Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).
Mestre, F. et al. Disentangling food-web environment relationships: a review with guidelines. Basic Appl. Ecol. 61, 102–115 (2022).
Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).
Rodil, I. F., Lucena-Moya, P., Tamelander, T., Norkko, J. & Norkko, A. Seasonal variability in benthic–pelagic coupling: quantifying organic matter inputs to the seafloor and benthic macrofauna using a multi-marker approach. Front. Mar. Sci. 7, 404 (2020).
Gerakaris, V. et al. Benthic-pelagic coupling of marine primary producers under different natural and human-induced pressures’ regimes. Front. Mar. Sci. 9, 909927 (2022).
Lesser, M. P. Benthic–pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).
Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).
Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade. Front. Mar. Sci. 11, 502336 (2020).
Robinson, J. P. W. et al. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol. Evol. 39, 467–478 (2024).
Carreón-Palau, L., Parrish, C. C., Angel-Rodríguez, J. A. D., Pérez-España, H. & Aguiñiga-García, S. Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids. Limnol. Oceanogr. 58, 593–612 (2013).
Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).
Choat, J., Clements, K. & Robbins, W. The trophic status of herbivorous fishes on coral reefs. Mar. Biol. 140, 613–623 (2002).
D’Alessandro, S. & Mariani, S. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs. Fish. Fish. 22, 822–833 (2021).
Cicala, D. et al. Spatial analysis of demersal food webs through integration of eDNA metabarcoding with fishing activities. Front. Mar. Sci. 10, 1209093 (2024).
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
Traugott, M., Thalinger, B., Wallinger, C. & Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish. Biol. 98, 367–382 (2020).
Xu, Y. et al. Recognizing topological attributes and spatiotemporal patterns in spotted seals (Phoca largha) trophic networks based on eDNA metabarcoding. Front. Mar. Sci. 10, 1305763 (2023).
Marwayana, O. N., Gold, Z., Meyer, C. P. & Barber, P. H. Environmental DNA in a global biodiversity hotspot: lessons from coral reef fish diversity across the Indonesian archipelago. Environ. DNA 4, 222–238 (2022).
Si, Z. et al. Quantifying the temporal dynamics of marine biodiversity under anthropogenic impacts using eDNA metabarcoding. Environ. DNA 7, e70113 (2025).
Maciute, A. et al. Environmental gradients, not geographic boundaries, structure meiofaunal communities in Siberian Seas. Environ. DNA 7, e70124 (2025).
Li, F., Zhang, Y., Altermatt, F., Yang, J. & Zhang, X. Destabilizing effects of environmental stressors on aquatic communities and interaction networks across a major river basin. Environ. Sci. Technol. 57, 7828–7839 (2023).
Gu, S. et al. Assessing riverine fish community diversity and stability by eDNA metabarcoding. Ecol. Indic. 157, 111222 (2023).
Russo, L. et al. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. Food Webs 32, e00246 (2022).
Boyse, E. et al. Inferring species interactions from co-occurrence networks with environmental DNA metabarcoding data in a coastal marine food web. Mol. Ecol. 34, e17701 (2025).
Russo, L. et al. From metabarcoding time series to plankton food webs: the hidden role of trophic hierarchy in providing ecological resilience. Mar. Ecol. 44, e12733 (2023).
Shurin, J. B., Gruner, D. S. & Hillebrand, H. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B 273, 1–9 (2005).
Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).
Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. 7, eabf3792 (2021).
Eskuche-Keith, P., Hollyman, P., Taylor, M. L. & O’Gorman, E. J. Trophic structuring of modularity alters energy flow through marine food webs. Front. Mar. Sci. 9, 1046150 (2023).
Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).
Orcutt, B. N. et al. Microbial activity in the marine deep biosphere: progress and prospects. Front. Microbiol. 4, 189 (2013).
Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).
Jonge, D. S. W. D. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).
Mas D. B., Scarabotti P. A., Alvarenga P., Vaschetto P. A., Arim M. Food web structure mediates positive and negative effects of diversity on ecosystem functioning in a large floodplain river. Am. Nat. 206, 115–129 (2025).
Mougi, A. Spatial compartmentation and food web stability. Sci. Rep. 8, 16237 (2018).
Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).
Valdivia, A., Cox, C. E. & Bruno, J. F. Predatory fish depletion and recovery potential on Caribbean reefs. Sci. Adv. 3, e1601303 (2017).
Qiu, Y., Lin, Z. & Wang, Y. Responses of fish production to fishing and climate variability in the northern South China Sea. Prog. Oceanogr. 85, 197–212 (2010).
Smith, J. E., Hunter, C. L. & Smith, C. M. The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia 163, 497–507 (2010).
Sentis, A., Hemptinne, J.-L. & Brodeur, J. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol. Lett. 17, 785–793 (2014).
Protopapa, M., Zervoudaki, S., Assimakopoulou, G., Velaoras, D. & Koppelmann, R. Mesozooplankton community structure in the Eastern Mediterranean Sea. J. Mar. Syst. 211, 103401 (2020).
Protopapa, M. et al. Trophic positioning of prominent copepods in the epi- and mesopelagic zone of the ultra-oligotrophic eastern Mediterranean Sea. Deep Sea Res. Part II 164, 144–155 (2019).
O’Gorman, E. J., Fitch, J. E. & Crowe, T. P. Multiple anthropogenic stressors and the structural properties of food webs. Ecology 93, 441–448 (2012).
Leclerc, C. et al. Temperature, productivity, and habitat characteristics collectively drive lake food web structure. Glob. Change Biol. 29, 2450–2465 (2023).
Kones, J. K., Soetaert, K., Oevelen, D. V. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Model. 220, 370–382 (2009).
Thompson, R. M., Hemberg, M., Starzomski, B. M. & Shurin, J. B. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88, 612–617 (2007).
Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food-web trophic structure. Ecol. Lett. 21, 836–844 (2018).
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).
Lindmark, M., Ohlberger, J., Huss, M. & Gårdmark, A. Size-based ecological interactions drive food web responses to climate warming. Ecol. Lett. 22, 778–786 (2019).
McCauley, D. J. et al. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21, 439–454 (2018).
Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).
Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
Kordas, R. L., Pawar, S., Kontopoulos, D.-G., Woodward, G. & O’Gorman, E. J. Metabolic plasticity can amplify ecosystem responses to global warming. Nat. Commun. 13, 2161 (2022).
Diehl, S. Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am. Nat. 169, 173–191 (2007).
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 7240 (2018).
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
McWhorter, J. K., Halloran, P. R., Roff, G. & Mumby, P. J. Climate change impacts on mesophotic regions of the Great Barrier Reef. Proc. Natl. Acad. Sci. USA 121, e2303336121 (2024).
Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry-a synthesis. Deep Sea Res. Part II 57, 1504–1518 (2010).
McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl. Acad. Sci. USA 109, 15366–15371 (2012).
Tecchio, S. et al. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Res. Part I 75, 1–15 (2013).
Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19, 426–438 (2019).
Yoccoz, N. G. The future of environmental DNA in ecology. Mol. Ecol. 21, 2031–2038 (2012).
Yang, J. et al. Recent advances in environmental DNA- based biodiversity assessment and conservation. Divers. Distrib. 27, 1876–1879 (2021).
Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).
Huang, D. et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 45, 157–168 (2015).
Bohmann, K. et al. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Resour. 22, 1231–1246 (2022).
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108, 4516–4522 (2010).
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).
Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).
Geller, J. B., Meyer, C., Parker, M. & Hawk, H. L. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
Feng, K. et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol. Ecol. 26, 6170–6182 (2017).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–122 (2011).
Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Hoban, M. L., Bunce, M. & Bowen, B. W. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45–60 m on mesophotic coral reefs. Mol. Ecol. 32, 5590–5608 (2023).
Perry, W. B. et al. An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding. Nat. Commun. 15, 4372 (2024).
Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).
Feng, K. et al. iNAP: an integrated network analysis pipeline for microbiome studies. iMeta 1, e13 (2022).
Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).
Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).
Csárdi, G. & Nepusz, T. The igraph software. Int. J. Complex Syst. 1695, 1–9 (2006).
Oksanen, J. Vegan: Community Ecology Package. Version 2.6-6.1 (2024).
Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B 364, 1711–1723 (2009).
Burgos, E. et al. Why nestedness in mutualistic networks?. J. Theor. Biol. 249, 307–313 (2007).
Landi, P., Minoarivelo, H. O., Brännström, Å, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
Pimiento, C. et al. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat. Commun. 14, 7691 (2023).
Diamond, J. & Roy, D. Patterns of functional diversity along latitudinal gradients of species richness in eleven fish families. Glob. Ecol. Biogeogr. 32, 450–465 (2023).
Henderson, C. J. et al. Long term declines in the functional diversity of sharks in the coastal oceans of eastern Australia. Commun. Biol. 7, 611 (2024).
Laub, B. G. & Budy, P. Assessing the likely effectiveness of multispecies management for imperiled desert fishes with niche overlap analysis. Conserv. Biol. 29, 1153–1163 (2015).
Neff, F. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Tye, S. P., Fey, S. B., Gibert, J. P. & Siepielski, A. M. Predator mass mortality events restructure food webs through trophic decoupling. Nature 626, 335–340 (2024).
Acknowledgements
This work was financially supported by the National Science Foundation for Distinguished Young Scholars (42025603), the National Natural Science Foundation of China (No. 42406134), the Qingdao New Energy Shandong Laboratory Open Project (QNESL OP202306), the Ministry of Science and Technology of China (2021YFF0502801), the Postdoctoral Fellowship Program of CPSF (No. GZC20232713). We gratefully thank Ziming Yuan, Xiaoliang Ren, Aiyang Wang, and Lei An for their significant contributions to the sample collection. Sampling was conducted with permission from the Hainan Provincial Government.
Author information
Authors and Affiliations
Contributions
All authors contributed intellectual input and assistance to this study and manuscript preparation. Z.Z.: Conceptualization; Methodology; Formal analysis; Investigation; Visualization; Writing-Original Draft. M.H.: Writing-Review & Editing; J.C.: Writing-Review & Editing; Z.S.: Conceptualization, Funding acquisition, Supervision, Resources.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks Barbara Bauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Nadine Schubert and Alice Drinkwater. [A peer review file is available].
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Transparent Peer Review file
Supplementary Information
Description of Additional Supplementary Files
Supplementary Data File 1
Reporting Summary
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this article
Cite this article
Zhang, Z., Hui, M., Cheng, J. et al. Warming and resource enhancement shape food webs in South China Sea coral reef system.
Commun Earth Environ (2025). https://doi.org/10.1038/s43247-025-03147-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-025-03147-7
Source: Ecology - nature.com
