Abstract
In this study, we present the results of archaeogenetic investigations of Early Bronze Age individuals from Lower Austria, specifically associated with the Únětice and Unterwölbling cultural groups. Through analysing newly generated genome-wide data of 129 individuals, we explore the social structure and genetic relationships within and between these communities. Our results reveal a predominantly patrilocal society with non-strict female exogamic practices. Additionally, Identity-by-Descent analysis detects long-distance genetic connections, emphasizing the complex network of interactions in Central Europe during this period. Despite shared social dynamics, notable genetic distinctions emerge between the Únětice and Unterwölbling groups. These insights contribute to our understanding of Bronze Age population interconnections and call for a nuanced interpretation of social dynamics in this historical context.
Data availability
The raw DNA sequences for individuals newly sequenced in this study are deposited in the European Nucleotide Archive under the study accession number PRJEB89777. Source Data for Fig. 3b can be found in Supplementary Data 3. Source Data for Fig. 5 in Supplementary Data 5 and for Fig. 6 in Supplementary Data 4. 1000 Genome Project data, used as the reference panel for the imputation was taken from https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. The reference data used in this study are available in the European Nucleotide Archive under accession code PRJEB11450, PRJEB22652, PRJEB23635, PRJEB30874, PRJEB32466, PRJEB24794, PRJNA608699, PRJEB11364. Human remains analyzed in this study remain under the care of the Department of Anthropology at the Natural History Museum in Vienna (curator of national collections: Karin Wiltschke-Schrotta, [email protected]) and can be found using the accession code NHMW-Anthro-OSTE combined with the inventory number (Inv. Nr.). Individuals from Ulrichskirchen und Drasenhofen remain under the care of the State Collections of Lower Austria (collection manager: Franz Pieler, [email protected]), accessible through the Federal Monuments Office measure numbers 15128.18.04, 15129.18.04 (Drasenhofen) and 15220.11.01, 15220.11.02 (Ulrichskirchen). Source data are provided with this paper.
References
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).
Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).
Roberts, B. W. & Frieman, C. J. Drawing Boundaries and Building Models: investigating the concept of the ‘Chalcolithic frontier’ in north-west Europe. in Allen, M., Gardiner, J. & Sheridan, A. (eds) Is There a British Chalcolithic: People, Place and Polity in the Later 3rd Millennium, 27–39 (Oxbow, Oxford, 2012).
Roberts, B. W. & Frieman, C. J. Early Metallurgy in Western and Northern Europe. in Fowler, C., Harding, J. & Hofmann, D. (eds) The Oxford Handbook of Neolithic Europe (Oxford Academic, Oxford, 2015).
Vandkilde, H. Bronzization: The Bronze Age as Pre-Modern Globalization. Praehist. Z. 91, 103–123 (2016).
Vandkilde, H. Bronze Age Beginnings–A Scalar View From the Global Outskirts. Proc. Prehist. Soc. 85, 1–27 (2019).
Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734 (2019).
Papac, L. et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 7, eabi6941 (2021).
Penske, S. et al. Kinship practices at the early bronze age site of Leubingen in Central Germany. Sci. Rep. 14, 3871 (2024).
Sjögren, K. G. et al. Kinship and social organization in Copper Age Europe. A cross-disciplinary analysis of archaeology, DNA, isotopes, and anthropology from two Bell Beaker cemeteries. PLoS One 15, e0241278 (2020).
Ensor, B. E. The Not Very Patrilocal European Neolithic: Strontium, aDNA, and Archaeological Kinship Analyses (Archaeopress, Oxford, 2021).
Frieman, C. J., Teather, A. & Morgan, C. Bodies in motion: narratives and counter narratives of gendered mobility in European later prehistory. Nor. Archaeol. Rev. 52, 148–169 (2019).
Meller, H. Armies in the Early Bronze Age? An alternative interpretation of Únětice Culture axe hoards. Antiquity 91, 1529–1545 (2017).
Pernicka, E. et al. Why the Nebra Sky Disc Dates to the Early Bronze Age. An Overview of the Interdisciplinary Results. Arch. Austriaca 104, 89–122 (2020).
Lauermann, E. Studien zur Aunjetitz-Kultur im Nördlichen Niederösterreich. Universitätsforschungen zur Prähistorischen Archäologie 99 (Habelt, Bonn, 2003).
Horváth, T. Das Gräberfeld in Drasenhofen. in Fiebig, K. & Csaplaros, A. (eds) Trassenarchäologie 03, Archpro Sonderheft 1, 70–81 (Archaeoprotect, Pöttelsdorf, 2019).
Neumann, G. U. et al. Yersinia pestis im frühbronzezeitlichen Gräberfeld von Drasenhofen: die derzeit ältesten Pesttoten Österreichs in ihrem kulturhistorischen Kontext. Arch. Austriaca 107, 137–158 (2023).
Wewerka, B. Ein frühbronzezeitliches Gräberfeld aus Zwingendorf, Niederösterreich. Arch. Austriaca 66, 21–47 (1982).
Rebay-Salisbury, K. et al. Motherhood at early Bronze Age Unterhautzenthal, Lower Austria. Arch. Austriaca 102, 71–134 (2018).
Pany-Kucera, D. et al. Social Relations, Deprivation and Violence at Schleinbach, Lower Austria: Insights from an interdisciplinary analysis of the Early Bronze Age human remains. Arch. Austriaca 104, 13–52 (2020).
Verdianu, D. Die frühbronzezeitlichen Gräber aus Ulrichskirchen: Gräberfeld und Sonderbestattungen im Vergleich (Universität Wien, Vienna, 2024).
Neugebauer, J.-W. (ed.) Bronzezeit in Ostösterreich. Wissenschaft-liche Schriftenreihe Niederösterreich 98–101 (Niederösterreichisches Pressehaus, Wien-St. Pölten, 1994).
Knipper, C. et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl Acad. Sci. USA, 201706355 (2017).
Neugebauer, J.-W. Die Nekropole F von Gemeinlebarn, Niederösterreich. Untersuchungen zu den Bestattungssitten und zum Grabraub in der ausgehenden frühbronzezeit in Niederösterreich südlich der Donau zwischen Enns und Wienerwald. Römisch-Germanische Forschungen, Vol. 49 (Philipp von Zabern, Mainz, 1991).
Rebay-Salisbury, K. et al. Gendered burial practices of early Bronze Age children align with peptide-based sex identification: a case study from Franzhausen I, Austria. J. Archaeol. Sci. 139, 105549 (2022).
Haughton, M. Gender in Earlier Bronze Age Ireland and Scotland. Eur. J. Archaeol. 26, 19–38 (2023).
Neugebauer, C. & Neugebauer, J.-W. Franzhausen: Das frühbronzezeitliche Gräberfeld I. Fundberichte Österreich Materialhefte Reihe A 5/1 und 2 (Berger, Horn, 1997).
Reiter, V. Frühbronzezeitliche Brandbestattungen im Unteren Traisental, Niederösterreich. Fundber. aus Österreich 47, 195–234 (2008).
Blesl, C. Das frühbronzezeitliche Gräberfeld von Pottenbrunn. Fundberichte aus Österreich, Materialheft A, Vol. 15 (Berger, Horn, 2006).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).
Gnecchi-Ruscone, G. A. et al. Network of large pedigrees reveals social practices of Avar communities. Nature 629, 376–383 (2024).
Ruckdeschel, W. Die frühbronzezeitlichen Gräber Südbayerns: Ein Beitrag zur Kenntnis der Straubinger Kultur (Habelt, Bonn, 1978).
Brück, J. Ancient DNA, kinship and relational identities in Bronze Age Britain. Antiquity 95, 228–237 (2021).
Brück, J. Bronze Age relations: genetics, kinship and gender in Britain. Kinsh. Sex. Biol. Relatedness: Contrib. Archaeogenet. Underst. Soc. Biol. Relat. 15, 250–259 (2023).
Rebay-Salisbury, K. et al. Child murder in the Early Bronze Age: proteomic sex identification of a cold case from Schleinbach, Austria. Archaeol. Anthropol. Sci. 12, 265 (2020).
Rebay-Salisbury, K. et al. Tracing mother-child relations in Austrian Early Bronze Age communities through mitochondrial DNA. Kinship, Sex, and Biological Relatedness (2023).
Orfanou, E., Himmel, M., Aron, F. & Haak, W. Minimally-invasive sampling of pars petrosa (os temporale) for ancient DNA extraction v1. (2020).
Neumann, G. U., Andrades Valtuena, A., Fellows Yates, J. A., Stahl, R. & Brandt, G. Tooth sampling from the inner pulp chamber for ancient DNA extraction v2. (2020).
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 1–14 (2016).
Jónsson, H. et al. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinforma. 15, 356 (2014).
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).
Rohland, N. et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40, e3 (2012).
Rohland, N. et al. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, 20130624 (2015).
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. USA 110, 2223–2227 (2013).
Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
Llorente, M. G. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS One 13, e0195491 (2018).
Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. bioRxiv, 023374 (2015).
Korneliussen, T. S. & Moltke, I. NgsRelate: a software tool for estimating pairwise relatedness from next-generation sequencing data. Bioinformatics 31, 4009–4011 (2015).
Hanghøj, K. et al. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034 (2019).
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
Rubinacci, S. et al. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).
Acknowledgements
We thank the staff of the Department of Anthropology at the Natural History Museum in Vienna, in particular Karin Wiltschke-Schrotta, Doris Pany-Kucera and Michaela Spannagl-Steiner, for granting access to the human remains under their curation. We are grateful to Kurt Fiebig, the director of the excavation at Drasenhofen, for the detailed excavation records. Walther Parson and David Reich generously let us access and re-analyze samples and data from previous projects. This study was funded in the framework of the project “The value of mothers to society: responses to motherhood and child rearing practices in prehistoric Europe’, which received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 676828, PI: K. Rebay-Salisbury. This work was supported by National Institutes of Health grant HG012287; by John Templeton Foundation grant 61220; by the Howard Hughes Medical Institute (HHMI), a gift from J.-F. Clin; by the Allen Discovery Center, a Paul G. Allen Frontiers Group advised program.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
K.R.-S. and P.W.S. conceived of the study. A.F., R.A.B., T.S., L.S., R.R., R.B., N.R., K.S., J.N.W., E.C., F.Z., K.C., L.I., L.Q., O.C., A.W., and G.B.M. performed laboratory work. R.P., D.R. and J.K. supervised laboratory work. A.F., G.U.N., A.M. and H.R. and H.R. analyzed data. K.R.-S., F.K., M.S., M.T.-N., F.N., and D.V. performed anthropological assessments. K.R.-S., F.K., M.S., M.T.-N., F.N., R.P. and D.V. assembled and interpreted archaeological material. A.F. and A.M. designed figures. A.F., A.M., and K.R.-S. wrote the paper with input from all co-authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Catherine Frieman, Anna Tornberg, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Description of Additional Supplementary Files
Supplementary Dataset 1
Supplementary Dataset 2
Supplementary Dataset 3
Supplementary Dataset 4
Supplementary Dataset 5
Supplementary Dataset 6
Supplementary Dataset 7
Reporting Summary
Transparent Peer Review file
Source data
Source Data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this article
Cite this article
Furtwängler, A., Rebay-Salisbury, K., Neumann, G.U. et al. Tracing social mechanisms and interregional connections in Early Bronze Age Societies in Lower Austria.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67906-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-67906-y
Source: Ecology - nature.com
