in

Tracing social mechanisms and interregional connections in Early Bronze Age Societies in Lower Austria


Abstract

In this study, we present the results of archaeogenetic investigations of Early Bronze Age individuals from Lower Austria, specifically associated with the Únětice and Unterwölbling cultural groups. Through analysing newly generated genome-wide data of 129 individuals, we explore the social structure and genetic relationships within and between these communities. Our results reveal a predominantly patrilocal society with non-strict female exogamic practices. Additionally, Identity-by-Descent analysis detects long-distance genetic connections, emphasizing the complex network of interactions in Central Europe during this period. Despite shared social dynamics, notable genetic distinctions emerge between the Únětice and Unterwölbling groups. These insights contribute to our understanding of Bronze Age population interconnections and call for a nuanced interpretation of social dynamics in this historical context.

Data availability

The raw DNA sequences for individuals newly sequenced in this study are deposited in the European Nucleotide Archive under the study accession number PRJEB89777. Source Data for Fig. 3b can be found in Supplementary Data 3. Source Data for Fig. 5 in Supplementary Data 5 and for Fig. 6 in Supplementary Data 4. 1000 Genome Project data, used as the reference panel for the imputation was taken from https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. The reference data used in this study are available in the European Nucleotide Archive under accession code PRJEB11450, PRJEB22652, PRJEB23635, PRJEB30874, PRJEB32466, PRJEB24794, PRJNA608699, PRJEB11364. Human remains analyzed in this study remain under the care of the Department of Anthropology at the Natural History Museum in Vienna (curator of national collections: Karin Wiltschke-Schrotta, [email protected]) and can be found using the accession code NHMW-Anthro-OSTE combined with the inventory number (Inv. Nr.). Individuals from Ulrichskirchen und Drasenhofen remain under the care of the State Collections of Lower Austria (collection manager: Franz Pieler, [email protected]), accessible through the Federal Monuments Office measure numbers 15128.18.04, 15129.18.04 (Drasenhofen) and 15220.11.01, 15220.11.02 (Ulrichskirchen). Source data are provided with this paper.

References

  1. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Google Scholar 

  2. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Google Scholar 

  3. Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).

    Google Scholar 

  4. Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).

    Google Scholar 

  5. Roberts, B. W. & Frieman, C. J. Drawing Boundaries and Building Models: investigating the concept of the ‘Chalcolithic frontier’ in north-west Europe. in Allen, M., Gardiner, J. & Sheridan, A. (eds) Is There a British Chalcolithic: People, Place and Polity in the Later 3rd Millennium, 27–39 (Oxbow, Oxford, 2012).

  6. Roberts, B. W. & Frieman, C. J. Early Metallurgy in Western and Northern Europe. in Fowler, C., Harding, J. & Hofmann, D. (eds) The Oxford Handbook of Neolithic Europe (Oxford Academic, Oxford, 2015).

  7. Vandkilde, H. Bronzization: The Bronze Age as Pre-Modern Globalization. Praehist. Z. 91, 103–123 (2016).

    Google Scholar 

  8. Vandkilde, H. Bronze Age Beginnings–A Scalar View From the Global Outskirts. Proc. Prehist. Soc. 85, 1–27 (2019).

    Google Scholar 

  9. Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734 (2019).

    Google Scholar 

  10. Papac, L. et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 7, eabi6941 (2021).

    Google Scholar 

  11. Penske, S. et al. Kinship practices at the early bronze age site of Leubingen in Central Germany. Sci. Rep. 14, 3871 (2024).

    Google Scholar 

  12. Sjögren, K. G. et al. Kinship and social organization in Copper Age Europe. A cross-disciplinary analysis of archaeology, DNA, isotopes, and anthropology from two Bell Beaker cemeteries. PLoS One 15, e0241278 (2020).

    Google Scholar 

  13. Ensor, B. E. The Not Very Patrilocal European Neolithic: Strontium, aDNA, and Archaeological Kinship Analyses (Archaeopress, Oxford, 2021).

  14. Frieman, C. J., Teather, A. & Morgan, C. Bodies in motion: narratives and counter narratives of gendered mobility in European later prehistory. Nor. Archaeol. Rev. 52, 148–169 (2019).

    Google Scholar 

  15. Meller, H. Armies in the Early Bronze Age? An alternative interpretation of Únětice Culture axe hoards. Antiquity 91, 1529–1545 (2017).

    Google Scholar 

  16. Pernicka, E. et al. Why the Nebra Sky Disc Dates to the Early Bronze Age. An Overview of the Interdisciplinary Results. Arch. Austriaca 104, 89–122 (2020).

    Google Scholar 

  17. Lauermann, E. Studien zur Aunjetitz-Kultur im Nördlichen Niederösterreich. Universitätsforschungen zur Prähistorischen Archäologie 99 (Habelt, Bonn, 2003).

  18. Horváth, T. Das Gräberfeld in Drasenhofen. in Fiebig, K. & Csaplaros, A. (eds) Trassenarchäologie 03, Archpro Sonderheft 1, 70–81 (Archaeoprotect, Pöttelsdorf, 2019).

  19. Neumann, G. U. et al. Yersinia pestis im frühbronzezeitlichen Gräberfeld von Drasenhofen: die derzeit ältesten Pesttoten Österreichs in ihrem kulturhistorischen Kontext. Arch. Austriaca 107, 137–158 (2023).

    Google Scholar 

  20. Wewerka, B. Ein frühbronzezeitliches Gräberfeld aus Zwingendorf, Niederösterreich. Arch. Austriaca 66, 21–47 (1982).

    Google Scholar 

  21. Rebay-Salisbury, K. et al. Motherhood at early Bronze Age Unterhautzenthal, Lower Austria. Arch. Austriaca 102, 71–134 (2018).

    Google Scholar 

  22. Pany-Kucera, D. et al. Social Relations, Deprivation and Violence at Schleinbach, Lower Austria: Insights from an interdisciplinary analysis of the Early Bronze Age human remains. Arch. Austriaca 104, 13–52 (2020).

    Google Scholar 

  23. Verdianu, D. Die frühbronzezeitlichen Gräber aus Ulrichskirchen: Gräberfeld und Sonderbestattungen im Vergleich (Universität Wien, Vienna, 2024).

  24. Neugebauer, J.-W. (ed.) Bronzezeit in Ostösterreich. Wissenschaft-liche Schriftenreihe Niederösterreich 98101 (Niederösterreichisches Pressehaus, Wien-St. Pölten, 1994).

  25. Knipper, C. et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl Acad. Sci. USA, 201706355 (2017).

  26. Neugebauer, J.-W. Die Nekropole F von Gemeinlebarn, Niederösterreich. Untersuchungen zu den Bestattungssitten und zum Grabraub in der ausgehenden frühbronzezeit in Niederösterreich südlich der Donau zwischen Enns und Wienerwald. Römisch-Germanische Forschungen, Vol. 49 (Philipp von Zabern, Mainz, 1991).

  27. Rebay-Salisbury, K. et al. Gendered burial practices of early Bronze Age children align with peptide-based sex identification: a case study from Franzhausen I, Austria. J. Archaeol. Sci. 139, 105549 (2022).

    Google Scholar 

  28. Haughton, M. Gender in Earlier Bronze Age Ireland and Scotland. Eur. J. Archaeol. 26, 19–38 (2023).

    Google Scholar 

  29. Neugebauer, C. & Neugebauer, J.-W. Franzhausen: Das frühbronzezeitliche Gräberfeld I. Fundberichte Österreich Materialhefte Reihe A 5/1 und 2 (Berger, Horn, 1997).

  30. Reiter, V. Frühbronzezeitliche Brandbestattungen im Unteren Traisental, Niederösterreich. Fundber. aus Österreich 47, 195–234 (2008).

    Google Scholar 

  31. Blesl, C. Das frühbronzezeitliche Gräberfeld von Pottenbrunn. Fundberichte aus Österreich, Materialheft A, Vol. 15 (Berger, Horn, 2006).

  32. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Google Scholar 

  33. Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 10, 1218 (2019).

    Google Scholar 

  34. Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Google Scholar 

  35. Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    Google Scholar 

  36. Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    Google Scholar 

  37. Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Google Scholar 

  38. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Google Scholar 

  39. Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).

    Google Scholar 

  40. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Google Scholar 

  41. Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).

    Google Scholar 

  42. Gnecchi-Ruscone, G. A. et al. Network of large pedigrees reveals social practices of Avar communities. Nature 629, 376–383 (2024).

    Google Scholar 

  43. Ruckdeschel, W. Die frühbronzezeitlichen Gräber Südbayerns: Ein Beitrag zur Kenntnis der Straubinger Kultur (Habelt, Bonn, 1978).

  44. Brück, J. Ancient DNA, kinship and relational identities in Bronze Age Britain. Antiquity 95, 228–237 (2021).

    Google Scholar 

  45. Brück, J. Bronze Age relations: genetics, kinship and gender in Britain. Kinsh. Sex. Biol. Relatedness: Contrib. Archaeogenet. Underst. Soc. Biol. Relat. 15, 250–259 (2023).

    Google Scholar 

  46. Rebay-Salisbury, K. et al. Child murder in the Early Bronze Age: proteomic sex identification of a cold case from Schleinbach, Austria. Archaeol. Anthropol. Sci. 12, 265 (2020).

    Google Scholar 

  47. Rebay-Salisbury, K. et al. Tracing mother-child relations in Austrian Early Bronze Age communities through mitochondrial DNA. Kinship, Sex, and Biological Relatedness (2023).

  48. Orfanou, E., Himmel, M., Aron, F. & Haak, W. Minimally-invasive sampling of pars petrosa (os temporale) for ancient DNA extraction v1. (2020).

  49. Neumann, G. U., Andrades Valtuena, A., Fellows Yates, J. A., Stahl, R. & Brandt, G. Tooth sampling from the inner pulp chamber for ancient DNA extraction v2. (2020).

  50. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Google Scholar 

  51. Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).

    Google Scholar 

  52. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Google Scholar 

  53. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Google Scholar 

  54. Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 1–14 (2016).

    Google Scholar 

  55. Jónsson, H. et al. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Google Scholar 

  56. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Google Scholar 

  57. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinforma. 15, 356 (2014).

    Google Scholar 

  58. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).

    Google Scholar 

  59. Rohland, N. et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Google Scholar 

  60. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Google Scholar 

  61. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40, e3 (2012).

    Google Scholar 

  62. Rohland, N. et al. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B 370, 20130624 (2015).

    Google Scholar 

  63. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl. Acad. Sci. USA 110, 2223–2227 (2013).

    Google Scholar 

  64. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    Google Scholar 

  65. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Google Scholar 

  66. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Google Scholar 

  67. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Google Scholar 

  68. Llorente, M. G. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).

    Google Scholar 

  69. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Google Scholar 

  70. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Google Scholar 

  71. Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS One 13, e0195491 (2018).

    Google Scholar 

  72. Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. bioRxiv, 023374 (2015).

  73. Korneliussen, T. S. & Moltke, I. NgsRelate: a software tool for estimating pairwise relatedness from next-generation sequencing data. Bioinformatics 31, 4009–4011 (2015).

    Google Scholar 

  74. Hanghøj, K. et al. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034 (2019).

    Google Scholar 

  75. Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Google Scholar 

  76. Rubinacci, S. et al. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank the staff of the Department of Anthropology at the Natural History Museum in Vienna, in particular Karin Wiltschke-Schrotta, Doris Pany-Kucera and Michaela Spannagl-Steiner, for granting access to the human remains under their curation. We are grateful to Kurt Fiebig, the director of the excavation at Drasenhofen, for the detailed excavation records. Walther Parson and David Reich generously let us access and re-analyze samples and data from previous projects. This study was funded in the framework of the project “The value of mothers to society: responses to motherhood and child rearing practices in prehistoric Europe’, which received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 676828, PI: K. Rebay-Salisbury. This work was supported by National Institutes of Health grant HG012287; by John Templeton Foundation grant 61220; by the Howard Hughes Medical Institute (HHMI), a gift from J.-F. Clin; by the Allen Discovery Center, a Paul G. Allen Frontiers Group advised program.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

Authors

Contributions

K.R.-S. and P.W.S. conceived of the study. A.F., R.A.B., T.S., L.S., R.R., R.B., N.R., K.S., J.N.W., E.C., F.Z., K.C., L.I., L.Q., O.C., A.W., and G.B.M. performed laboratory work. R.P., D.R. and J.K. supervised laboratory work. A.F., G.U.N., A.M. and H.R. and H.R. analyzed data. K.R.-S., F.K., M.S., M.T.-N., F.N., and D.V. performed anthropological assessments. K.R.-S., F.K., M.S., M.T.-N., F.N., R.P. and D.V. assembled and interpreted archaeological material. A.F. and A.M. designed figures. A.F., A.M., and K.R.-S. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to
Anja Furtwängler, Katharina Rebay-Salisbury or Alissa Mittnik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Catherine Frieman, Anna Tornberg, and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Dataset 1

Supplementary Dataset 2

Supplementary Dataset 3

Supplementary Dataset 4

Supplementary Dataset 5

Supplementary Dataset 6

Supplementary Dataset 7

Reporting Summary

Transparent Peer Review file

Source data

Source Data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Furtwängler, A., Rebay-Salisbury, K., Neumann, G.U. et al. Tracing social mechanisms and interregional connections in Early Bronze Age Societies in Lower Austria.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67906-y


Source: Ecology - nature.com

Warming and resource enhancement shape food webs in South China Sea coral reef system

Features of interest from a multi-season satellite survey of baleen whales on the West Antarctic Peninsula

Back to Top