in

Breeding Brown Pelicans Improve Foraging Performance as Energetic Needs Rise

  • 1.

    Pianka, E. R. On r- and K-Selection. Am. Nat. 104, 592–597 (1970).

    • Article
    • Google Scholar
  • 2.

    Charnov, E. Optimal foraging: The marginal value theorem. Biol. Fac. Staff Publ. (1976).

  • 3.

    Pyke, G. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).

    • Article
    • Google Scholar
  • 4.

    Rita, H., Ranta, E. & Peuhkuri, N. Competition in foraging groups. Oikos 76, 583–586 (1996).

    • Article
    • Google Scholar
  • 5.

    Bolker, B., Holyoak, M., Křivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).

    • Article
    • Google Scholar
  • 6.

    Lima, S. L. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv. Study Behav. 27, 215–290 (1998).

    • Article
    • Google Scholar
  • 7.

    Wiens, J. A. Population Responses To. 7, 81–120 (2007).

  • 8.

    Sih, A. Optimal behavior and density-dependent predation. Am. Nat. 123, 314–326 (1984).

    • Article
    • Google Scholar
  • 9.

    Kotler, B. P. & Brown, J. S. Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19, 281–307 (1988).

    • Article
    • Google Scholar
  • 10.

    Páez, D. J., Restif, O., Eby, P. & Plowright, R. K. Optimal foraging in seasonal environments: Implications for residency of Australian flying foxes in food-subsidized urban landscapes. Philos. Trans. R. Soc. B In press, (2018).

  • 11.

    Koenig, W. D., Van Vuren, D. & Hooge, P. N. Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol. Evol. 11, 514–517 (1996).

  • 12.

    Ropert-Coudert, Y. & Wilson, R. P. Trends and perspectives in animal-attached remote sensing. Front. Ecol. Evironment 3, 437–444 (2005).

    • Article
    • Google Scholar
  • 13.

    Wiens, J. A. Population responses to patchy environments. Annu. Rev. Ecol. Syst. 7, 81–120 (1976).

    • Article
    • Google Scholar
  • 14.

    Roshier, D. A. & Reid, J. R. W. On animal distributions in dynamic landscapes. Ecography (Cop.). 26, 539–544 (2003).

    • Article
    • Google Scholar
  • 15.

    Rose, G. A. & Leggett, W. C. The importance of scale to predator-prey spatial correlations: an example of Atlantic fishes. Ecology 71, 33–43 (1990).

    • Article
    • Google Scholar
  • 16.

    Johnson, A., Wiens, J., Milne, B. & Crist, T. Animal movements and population-dynamics in heterogeneous landscapes. Landsc. Ecol. 7, 63–75 (1992).

    • Article
    • Google Scholar
  • 17.

    Zamon, J. E. Seal predation on salmon and forage fish schools as a function of tidal currents in the San Juan Islands, Washington, USA. Fish. Oceanogr. 10, 353–366 (2001).

    • Article
    • Google Scholar
  • 18.

    Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859). 103, 458–473 (1963).

    • Google Scholar
  • 19.

    Russell, R. W., Hunt, G. L., Coyle, K. O. & Cooney, R. T. Foraging in a fractal environment: Spatial patterns in a marine predator-prey system. Landsc. Ecol. 7, 195–209 (1992).

    • Article
    • Google Scholar
  • 20.

    Fauchald, P., Erikstad, K. E. & Skarsfjord, H. Scale-dependent predator-prey interactions: the hierarchical spatial distribution of seabirds and prey. Ecology 81, 773–783 (2000).

    • Google Scholar
  • 21.

    Weimerskirch, H., Le Corre, M., Jaquemet, S. & Marsac, F. Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar. Ecol. Prog. Ser. 288, 251–261 (2005).

  • 22.

    Quinn, J. L. & Cresswell, W. Predator hunting behaviour and prey vulnerability. J. Anim. Ecol. 73, 143–154 (2004).

    • Article
    • Google Scholar
  • 23.

    Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).

    • Article
    • Google Scholar
  • 24.

    McIntyre, N. E. & Wiens, J. A. Interactions between landscape structure and animal behavior: The roles of heterogeneously distributed resources and food deprivation on movement patterns. Landsc. Ecol. 14, 437–447 (1999).

    • Article
    • Google Scholar
  • 25.

    Kamil, A. & Roitblat, H. L. The ecology of foraging behavior: implications for animal learning and memory. Annu. Rev. Psychol. 36, 141–169 (1985).

  • 26.

    Dietz, M. W., Daan, S. & Masman, D. Energy requirements for molt in the kestrel Falco tinnunculus. Physiol. Zool. 65, 1217–1235 (1992).

    • Article
    • Google Scholar
  • 27.

    Cox, G. W. The Role of Competition in the Evolution of Migration. Evolution (N. Y). 22, 180–192 (1968).

    • Google Scholar
  • 28.

    Humphries, M. M., Thomas, D. W. & Kramer, D. L. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol. Biochem. Zool. 76, 165–179 (2003).

  • 29.

    Lack, D. L. Ecological adaptations for breeding in birds. (1968).

  • 30.

    Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).

    • Google Scholar
  • 31.

    Stephens, D. W. On economically tracking a variable environment. Theor. Popul. Biol. 32, 15–25 (1987).

  • 32.

    Hafner, H. & Britton, R. H. Changes of foraging sites by nesting little egrets (Egretta garzetta L.) in relation to food supply. Colon. Waterbirds 6, 24–30 (1983).

    • Article
    • Google Scholar
  • 33.

    Hart, D. D. Foraging and Resource Patchiness: Field Experiments with a Grazing Stream Insect. Oikos 37, 46–52 (1981).

    • Article
    • Google Scholar
  • 34.

    Beauchamp, G., Belisle, M. & Giraldeau, L.-A. Influence of conspecific attraction on the spatial distribution of learning foragers in a patchy habitat. J. Anim. Ecol. 66, 671 (1997).

    • Article
    • Google Scholar
  • 35.

    Dumont, B. & Hill, D. R. C. Multi-agent simulation of group foraging in sheep: effects of spatial memory, conspecific attraction and plot size. Ecol. Modell. 141, 201–215 (2001).

    • Article
    • Google Scholar
  • 36.

    Vergara, P. M., Saura, S., Pérez-Hernández, C. G. & Soto, G. E. Hierarchical spatial decisions in fragmented landscapes: Modeling the foraging movements of woodpeckers. Ecol. Modell. 300, 114–122 (2015).

    • Article
    • Google Scholar
  • 37.

    Friedlaender, A. S. et al. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula. Deep. Res. Part II Top. Stud. Oceanogr. 58, 1729–1740 (2011).

  • 38.

    Isaac, B., White, J., Ierodiaconou, D. & Cooke, R. Response of a cryptic apex predator to a complete urban to forest gradient. Wildl. Res. 40, 427–436 (2013).

    • Article
    • Google Scholar
  • 39.

    York, P. et al. A habitat overlap analysis derived from maxent for tamarisk and the south-western willow flycatcher. Front. Earth Sci. 5, 120–129 (2011).

  • 40.

    Hamilton, C. D., Kovacs, K. M., Ims, R. A., Aars, J. & Lydersen, C. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. J. Anim. Ecol. 86, 1054–1064 (2017).

  • 41.

    Schlägel, U. E., Merrill, E. H. & Lewis, M. A. Territory surveillance and prey management: Wolves keep track of space and time. Ecol. Evol. 7, 8388–8405 (2017).

  • 42.

    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).

  • 43.

    Kareiva, P. M. & Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia 56, 234–238 (1983).

  • 44.

    Bergman, C. M., Schaefer, J. A. & Luttich, S. N. Caribou movement as a correlated random walk. Oecologia 123, 364–374 (2000).

  • 45.

    Leyrer, J., Spaans, B., Camara, M. & Piersma, T. Small home ranges and high site fidelity in red knots (Calidris canutus) wintering on the Banc d’Arguin, Mauritania. J. Ornithol. 147, 376–384 (2006).

    • Article
    • Google Scholar
  • 46.

    Kotzerka, J., Hatch, S. A. & Garthe, S. Evidence for foraging-site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the Gulf of Alaska. Condor 113, 80–88 (2011).

    • Article
    • Google Scholar
  • 47.

    Pinaud, D. & Weimerskirch, H. At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. J. Anim. Ecol. 76, 9–19 (2007).

  • 48.

    Pinaud, D., Cherel, Y. & Weimerskirch, H. Effect of environmental variability on habitat selection, diet, provisioning behaviour and chick growth in yellow-nosed albatrosses. Mar. Ecol. Prog. Ser. 298, 295–304 (2005).

  • 49.

    Shields, M. Brown Pelican: Pelecanus occidentalis. in The Birds of North America (eds. Poole, A. & Gill, F.) (Cornell Lab of Ornithology, 2014).

  • 50.

    Ahrenholz, D. W. Population biology and life history of the North American menhadens, Brevoortia spp. Mar. Fish. Rev. 53, 3–19 (1991).

    • Google Scholar
  • 51.

    Lamb, J. S., Satgé, Y. G. & Jodice, P. G. R. Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird. Ecol. Evol. 7, 6469–6481 (2017).

  • 52.

    King, D. T. et al. Home ranges and habitat use of brown pelicans (Pelecanus occidentalis) in the northern Gulf of Mexico. Waterbirds 36, 494–500 (2013).

    • Article
    • Google Scholar
  • 53.

    Weimerskirch, H. Are seabirds foraging for unpredictable resources? Deep. Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).

  • 54.

    Geary, B., Walter, S., Leberg, P., Karubian, J. & In Revision. Condition-dependent foraging strategies in a coastal seabird: evidence for the rich get richer hypothesis. Behav. Ecol. (2018).

  • 55.

    Ward, P. & Zahavi, A. The importance of certain assemblages of birds as ‘information-centres’ for food-finding. Ibis (Lond. 1859). 115, 517–534 (1973).

    • Article
    • Google Scholar
  • 56.

    Richner, H. & Heeb, P. Is the information center hypothesis a flop? Adv. Study Behav. 24, 1–46 (1995).

    • Article
    • Google Scholar
  • 57.

    Walter, S. T., Carloss, M. R., Hess, T. J. & Leberg, P. L. Hurricane, habitat degradation, and land loss effects on brown pelican nesting colonies. J. Coast. Res. 29, 187–195 (2013).

    • Article
    • Google Scholar
  • 58.

    Christmas, J. Y., McBee, J. T., Waller, R. S. & Sutter III, F. C. Habitat suitability index models: Gulf menhaden. (1982).

  • 59.

    Deegan, L. A. Effects of estuarine environmental conditions on population dynamics of young-of-the-year gulf menhaden. Mar. Ecol. Prog. Ser. 68, 195–205 (1990).

  • 60.

    Smith, J. W., Hall, E. A., McNeill, N. A. & O’Bier, W. B. The distribution of purse-seine sets and catches in the gulf menhaden fishery in the northern gulf of Mexico, 1994-98. Gulf Mex. Sci. 20, 12–24 (2002).

    • Google Scholar
  • 61.

    Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. in Proceedings of the 1968 23rd ACM National Conference 517–524 (1968).

  • 62.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Int. J. Glob. Environ. Issues 190, 231–259 (2006).

    • Article
    • Google Scholar
  • 63.

    Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Proceedings of the 21st International Conference on Machine Learning 655–662 (ACM Press, 2004).

  • 64.

    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    • Article
    • Google Scholar
  • 65.

    Swets, J. A. Measuring the accuracy of diagnostic systems. Science (80-.). 240, 1285–1293 (1988).

  • 66.

    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Modell. 133, 225–245 (2000).

    • Article
    • Google Scholar
  • 67.

    Selman, W., Hess, T. J. & Linscombe, J. Long-term population and colony dynamics of brown pelicans (Pelecanus occidentalis) in rapidly changing coastal Louisiana, USA. Waterbirds 39, 45–57 (2016).

    • Article
    • Google Scholar
  • 68.

    Fridolfsson, A.-K. & Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116 (1999).

    • Article
    • Google Scholar
  • 69.

    Andersson, S., Pryke, S. R., Örnborg, J., Lawes, M. J. & Andersson, M. Multiple receivers, multiple ornaments, and a trade-off between agonistic and epigamic signaling in a widowbird. Am. Nat. 160, 683–691 (2002).

  • 70.

    R Core Team. R: a language and environment for statistical computing. (2016).

  • 71.

    Calenge, C. Analysis of animal movements in R: the adehabitatLT package. R vignette 1–85 (2015).

  • 72.

    Fauchald, P. & Tveraa, T. Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84, 282–288 (2003).

    • Article
    • Google Scholar
  • 73.

    Henry, D. A. W., Ament, J. M. & Cumming, G. S. Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis. Mov. Ecol. 4, 1–18 (2015).

    • Google Scholar
  • 74.

    Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).

  • 75.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2018).

  • 76.

    Wood, S. & Wood, M. S. Package ‘mgcv’. R Packag. version 1–7 (2015).

  • 77.

    Rose, N. L., Yang, H., Turner, S. D. & Simpson, G. L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 82, 113–135 (2012).

  • 78.

    Sievert, C. plotly for R. (2018). Available at: https://plotly-book.cpsievert.me.


  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries