in

In utero elemental tags in vertebrae of the scalloped hammerhead shark Sphyrna lewini reveal migration patterns of pregnant females

  • 1.

    Compagno, L. J. V. FAO species catalogue. Vol. 4. Part 2. Sharks of the world: an annotated and illustrated catalogue of shark species known to date. FAO Fisheries Synopsis. (1984).

  • 2.

    Coiraton, C., Amezcua, F. & Salgado-Ugarte, I. H. Estructura de longitudes de las capturas del tiburón martillo común (Sphyrna lewini) en el Pacífico mexicano. Cienc. Pesq. 25, 27–40 (2017).

    • Google Scholar
  • 3.

    Alejo-Plata, M. C., Gómez-Márquez, J. L., Ramos, S. & Herrera, E. Presencia de neonatos y juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) y del tiburón sedoso Carcharhinus falciformis (Müller & Henle, 1839) en la costa de Oaxaca, Mexico. Rev. Biol. Mar. Oceanogr. 42, 403–413 (2007).

    • Article
    • Google Scholar
  • 4.

    Anislado-Tolentino, V. Ecología pesquera del tiburón martillo Sphyrna lewini (Griffith y Smith, 1834) en el litoral del estado de Michoacán, México. (Universidad Nacional Autónoma de México, México, 2000).

  • 5.

    Klimley, A. P. The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini. Environ. Biol. Fishes 18, 27–40 (1987).

    • Article
    • Google Scholar
  • 6.

    Hoyos-Padilla, E. M., Ketchum, J. T., Klimley, A. P. & Galván-Magaña, F. Ontogenetic migration of a female scalloped hammerhead shark Sphyrna lewini in the Gulf of California. Anim. Biotelemetry 2, 17 (2014).

    • Article
    • Google Scholar
  • 7.

    Coiraton, C., Amezcua, F. & Ketchum, J. T. New insights into the migration patterns of the scalloped hammerhead shark Sphyrna lewini based on vertebral microchemistry. Mar. Biol. (in press).

  • 8.

    Klimley, A. P. Schooling in Sphyrna lewini, a species with low risk of predation: a non-egalitarian state. Z. Tierpsychol. 70, 297–319 (1985).

    • Article
    • Google Scholar
  • 9.

    Klimley, A. P. Social organization of schools of the scalloped hammerhead shark, Sphyrna lewini (Griffith and Smith), in the Gulf of California. Scripps Institution of Oceanography, https://doi.org/10.1126/science.84.2169.83 (University of California, San Diego, 1983).

  • 10.

    Klimley, A. P. & Nelson, D. R. Diel movement patterns of the scalloped hammerhead shark (Sphyrna lewini) in relation to El Bajo Espiritu Santo: a refuging central-position social system. Behav. Ecol. Sociobiol. 15, 45–54 (1984).

    • Article
    • Google Scholar
  • 11.

    Torres-Huerta, A. M., Villavicencio-Garayzar, C. & Corro-Espinosa, D. Reproductive biology of the scalloped hammerhead shark Sphyrna lewini Griffith & Smith (Sphyrnidae) in the Gulf of California. Hidrobiologica 18, 227–237 (2008).

    • Google Scholar
  • 12.

    Bejarano-Álvarez, M., Galván-Magaña, F. & Ochoa-Baez, R. I. Reproductive biology of the scalloped hammerhead shark Sphyrna lewini (Chondrichthyes: Sphyrnidae) off south-west Mexico. aqua Int. J. Ichthyol. 17, 11–22 (2011).

    • Google Scholar
  • 13.

    Harry, A. V., Macbeth, W. G., Gutteridge, A. N. & Simpfendorfer, C. A. The life histories of endangered hammerhead sharks (Carcharhiniformes, Sphyrnidae) from the East Coast of Australia. J. Fish Biol. 78, 2026–2051 (2011).

  • 14.

    Clarke, T. A. The ecology of the scalloped hammerhead shark Sphyrna lewini in Hawaii. Pacific Sci. 25, 133–144 (1971).

    • Google Scholar
  • 15.

    Castro, J. I. The hammerhead sharks. In The Sharks of North America 504–531 (Oxford University Press, 2011).

  • 16.

    Smith, W. D., Miller, J. A. & Heppell, S. S. Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry. PLoS One 8, e62423 (2013).

  • 17.

    Scharer, R. M., Patterson, W. F., Carlson, J. K. & Poulakis, G. R. Age and growth of endangered smalltooth sawfish (Pristis pectinata) verified with LA-ICP-MS analysis of vertebrae. PLoS One 7, e47850 (2012).

  • 18.

    Pistevos, J. C. A., Reis-Santos, P., Izzo, C. & Gillanders, B. Element composition of shark vertebrae shows promise as a natural tag. Mar. Freshw. Res (2019).

  • 19.

    Tillett, B. J. et al. Decoding fingerprints: Elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks. Mar. Ecol. Prog. Ser. 434, 133–142 (2011).

  • 20.

    Mohan, J. A. et al. Elements of time and place: manganese and barium in shark vertebrae reflect age and upwelling histories. Proc. R. Soc. London, Biol. Sci. 285, 1–7 (2018).

    • Article
    • Google Scholar
  • 21.

    Carlisle, A. et al. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proc. R. Soc. London, Biol. Sci. 282 (2014).

  • 22.

    Estrada, J. A., Rice, A. N., Natanson, L. J. & Skomal, G. B. Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87, 829–834 (2006).

  • 23.

    Smith, W. D., Miller, J. A., Márquez-Farías, J. F. & Heppell, S. S. Elemental signatures reveal the geographic origins of a highly migratory shark: prospects for measuring population connectivity. Mar. Ecol. Prog. Ser. 556, 173–193 (2016).

  • 24.

    Lewis, J. P., Patterson, W. F., Carlson, J. K. & McLachlin, K. Do vertebral chemical signatures distinguish juvenile blacktip shark (Carcharhinus limbatus) nursery regions in the northern Gulf of Mexico? Mar. Freshw. Res. 67, 1014–1022 (2016).

  • 25.

    McMillan, M. N. et al. Analysis of vertebral chemistry to assess stock structure in a deep-sea shark, Etmopterus spinax. ICES J. Mar. Sci. 64, 793–803 (2016).

    • Google Scholar
  • 26.

    McMillan, M. N., Huveneers, C., Semmens, J. M. & Gillanders, B. M. Natural tags reveal populations of Conservation Dependent school shark use different pupping areas. Mar. Ecol. Prog. Ser. 599, 147–156 (2018).

  • 27.

    Izzo, C. et al. Vertebral chemistry demonstrates movement and population structure of bronze whaler. Mar. Ecol. Prog. Ser. 556, 195–207 (2016).

  • 28.

    Raoult, V. et al. Strontium mineralization of shark vertebrae. Sci. Rep. 6, 29698 (2016).

  • 29.

    Allen, P. J., Hobbs, J. A., Cech, J. J., Van Eenennaam, J. P. & Doroshov, S. I. Using trace elements in pectoral fin rays to assess life history movements in sturgeon: estimating age at initial seawater entry in Klamath river green sturgeon. Trans. Am. Fish. Soc. 138, 240–250 (2009).

  • 30.

    Ranaldi, M. M. & Gagnon, M. M. Trace metal incorporation in otoliths of black bream (Acanthopagrus butcheri Munro), an indicator of exposure to metal contamination. Water. Air. Soil Pollut. 194, 31–43 (2008).

  • 31.

    Ranaldi, M. M. & Gagnon, M. M. Trace metal incorporation in otoliths of pink snapper (Pagrus auratus) as an environmental monitor. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 152, 248–255 (2010).

  • 32.

    Selleslagh, J. et al. Can analysis of Platichthys flesus otoliths provide relevant data on historical metal pollution in estuaries? Experimental and in situ approaches. Sci. Total Environ. 557–558, 20–30 (2016).

  • 33.

    Wourms, J. P. Reproduction and development in chondrichthyan fishes. Am. Zool. 17, 379–410 (1977).

    • Article
    • Google Scholar
  • 34.

    Castro, J. I. A primer on shark reproduction. In The Sharks of North America 533–546 (Oxford University Press, 2011).

  • 35.

    Pérez-Jiménez, J. C. et al. Artisanal shark fishery at ‘Tres Marias’ Islands and Isabel Island in the Central Mexican Pacific. J. Northwest Atl. Fish. Sci. 35, 333–343 (2005).

    • Article
    • Google Scholar
  • 36.

    Alejo-Plata, M. C., Ramos Carrillo, S. & Cruz Ruiz, J. L. La pesquería artesanal del tiburón en Salina Cruz, Oaxaca, México. Cienc. y Mar X, 37–51 (2006).

  • 37.

    Mendizábal-Oriza, D., Vélez-Marín, R., Soriano-Velásquez, S. & González-Ania, V. Tiburones oceánicos del Pacífico mexicano. In Sustentabilidad y Pesca Responsable en México, 1999–2000 (eds. Cisneros Mata, M. A. & Díaz de León, A. J.) (INP-SAGARPA, 2002).

  • 38.

    Schroeder, R. Utilisation of vertebral microchemistry techniques to determine population structure of two inshore shark species along the east coast of Queensland, Australia. (James Cook University, 2011).

  • 39.

    Jones, D. L., Switzer, T. S., Houston, B. & Peebles, E. B. Use of otolith microchemistry to improve fisheries-independent indices of recruitment for gag (Mycteroperca microlepis): Linking estuarine nurseries to nearshore reefs in the eastern Gulf of Mexico. SEDAR33–DW09 (2013).

  • 40.

    Zolfonouna, E., Pakzada, S. M. R. & Salahinejad, M. Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression. Anal. Bioanal. Chem. 3, 65–72 (2016).

    • Google Scholar
  • 41.

    Marie, A. D., Miller, C., Cawich, C., Piovano, S. & Rico, C. Fisheries-independent surveys identify critical habitats for young scalloped hammerhead sharks (Sphyrna lewini) in the Rewa Delta, Fiji. Sci. Rep. 7, 1–12 (2017).

  • 42.

    Brown, K. T., Seeto, J., Lal, M. M. & Miller, C. E. Discovery of an important aggregation area for endangered scalloped hammerhead sharks, Sphyrna lewini, in the Rewa River estuary, Fiji Islands. Pacific Conserv. Biol. 22, 242 (2016).

    • Article
    • Google Scholar
  • 43.

    Duncan, K. M. & Holland, K. N. Habitat use, growth rates and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat. Mar. Ecol. Prog. Ser. 312, 211–221 (2006).

  • 44.

    Amezcua, F., Ramirez, M. & Flores-Verdugo, F. Classification and comparison of five estuaries in the southeast Gulf of California based on environmental variables and fish assemblages. Bull. Mar. Sci. 95, 139–159 (2019).

    • Article
    • Google Scholar
  • 45.

    McCulloch, M., Cappo, M., Aumend, J. & Müller, W. Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar. Freshw. Res. 56, 637–644 (2005).

  • 46.

    Crook, D. A., Macdonald, J. I., O’Connor, J. P. & Barry, B. Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. J. Fish Biol. 69, 1330–1344 (2006).

  • 47.

    Pearce, N. J. G. et al. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Geoanalytical Res. 21, 115–144 (1997).

  • 48.

    Koenig, A. E. & Wilson, S. A. A marine carbonate reference material for microanalysis. In Proceedings of the First International Sclerochronology Conference, St. Petersburg, Florida, July 17–21, 2007 (2007).

  • 49.

    Breiman, L. & Cutler, A. Manual on setting up, using, and understanding Random Forests v4.0. Technical Report. Available from, http://www.stat.berkeley.edu/breiman/Using_random_forests_v4.0.pdf (2003).

  • 50.

    Anderson, M. J., Walsh, D. C. I., Robert Clarke, K., Gorley, R. N. & Guerra-Castro, E. Some solutions to the multivariate Behrens–Fisher problem for dissimilarity-based analyses. Aust. New Zeal. J. Stat. 59, 57–79 (2017).

  • 51.

    Anderson, M. J. & Willis, T. J. Canonical Analysis of Principal Coordinates: A Useful Method of Constrained Ordination for Ecology. Ecology 84, 511–525 (2003).

    • Article
    • Google Scholar
  • 52.

    White, J. W. & Ruttenberg, B. I. Discriminant function analysis in marine ecology: some oversights and their solutions. Mar. Ecol. Prog. Ser. 329, 301–305 (2007).

  • 53.

    Sinclair, D. J., Kinsley, L. P. J. & Mcculloch, M. T. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim. Cosmochim. Acta 62, 1889–1901 (1998).

  • 54.

    Francis, R. I. C. C. Back-calculation of fish length: a critical review. J. Fish Biol. 36, 883–902 (1990).

    • Article
    • Google Scholar
  • 55.

    Coiraton, C. et al. Periodicity of the growth-band formation in vertebrae of juvenile scalloped hammerhead shark Sphyrna lewini from the Mexican Pacific Ocean. J. Fish Biol. 95, 1072–1085 (2019).

  • 56.

    Quist, M. C. & Isermann, D. A. Age and growth of fishes: principles and techniques. Age and growth of fishes: principles and techniques (American Fisheries Society, 2017).

  • 57.

    Branstetter, S. Age, growth and reproductive biology of the silky shark, Carcharhinus falciformis, and the scalloped hammerhead, Sphyrna lewini, from the northwestern Gulf of Mexico. Environ. Biol. Fishes 19, 161–173 (1987).

    • Article
    • Google Scholar
  • 58.

    Ricker, W. E. Growth rates and models. In Fish physiology. Vol. 8. (eds. Hoar, W. S. & Randal, B. J.) 678–744 (Academic Press, New York, 1979).

  • 59.

    Jones, D. L. Fathom Toolbox for Matlab: software for multivariate ecological and oceanographic data analysis. College of Marine Science, University of South Florida, St. Petersburg, FL, USA, https://www.marine.usf.edu/research/matlab-resources/ (2017).

  • 60.

    Lyons, K. & Adams, D. H. Maternal offloading of organochlorine contaminants in the yolk-sac placental scalloped hammerhead shark (Sphyrna lewini). Ecotoxicology 24, 553–562 (2015).

  • 61.

    Borga, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367–2385 (2004).

  • 62.

    Torres, P., Tristão da Cunha, R., Micaelo, C. & Dos Santos Rodrigues, A. Bioaccumulation of metals and PCBs in Raja clavata. Sci. Total Environ. 573, 1021–1030 (2016).

  • 63.

    Soto-Jiménez, M. F. & Páez-Osuna, F. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California). Estuar. Coast. Shelf Sci. 53, 259–274 (2001).

  • 64.

    Raygoza-Viera, J. R. et al. Accumulation and distribution of Hg and 210Pb in superficial sediments from a coastal lagoon in the SE Gulf of California associated with urban-industrial and port activities. Environ. Earth Sci. 72, 2729–2739 (2014).

  • 65.

    Jara-Marini, M. E., Soto-Jiménez, M. F. & Páez-Osuna, F. Trace metals accumulation patterns in a mangrove lagoon ecosystem, Mazatlán Harbor, southeast Gulf of California. J. Environ. Sci. Heal. Part A 43, 995–1005 (2008).

  • 66.

    Sturrock, A. M. et al. Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar. Ecol. Prog. Ser. 500, 245–264 (2014).

  • 67.

    Walther, B. D., Kingsford, M. J., O’Callaghan, M. D. & McCulloch, M. T. Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environ. Biol. Fishes 89, 441–451 (2010).

    • Article
    • Google Scholar
  • 68.

    Parsons, D. M. et al. A fisheries perspective of behavioural variability: differences in movement behaviour and extraction rate of an exploited sparid, snapper (Pagrus auratus). Can. J. Fish. Aquat. Sci. 68, 632–642 (2011).

    • Article
    • Google Scholar
  • 69.

    Kerr, L. A., Cadrin, S. X. & Secor, D. H. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507 (2010).

  • 70.

    Chapman, B. B., Brönmark, C., Nilsson, J. Å. & Hansson, L. A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).

    • Article
    • Google Scholar
  • 71.

    Baum, J. K. et al. Sphyrna lewini. The IUCN Red List of Threatened Species 2009: e.T39385A10190088, https://doi.org/10.2305/IUCN.UK.2007.RLTS.T39385A10190088.en (2007).

  • 72.

    DOF. NORMA Oficial Mexicana NOM-029-PESC-2006, Pesca responsable de tiburónes y rayas: Especificaciones para su aprovechamiento. 14, 60–102 (Diario Oficial de la Federación, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Estados Unidos Mexicanos, 2007).

  • 73.

    DOF. NORMA Oficial Mexicana NOM-009-SAG/PESC-2015, Que establece el procedimiento para determinar las épocas y zonas de veda para la captura de las diferentes especies de la flora y fauna acuáticas, en aguas de jurisdicción federal de los Estados Unidos Mexica. (Diario Oficial de la Federación, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Estados Unidos Mexicanos, 2016).


  • Source: Ecology - nature.com

    Rain induces temporary shifts in epiphytic bacterial communities of cucumber and tomato fruit

    An articulated Late Triassic (Norian) thalattosauroid from Alaska and ecomorphology and extinction of Thalattosauria