in

Biogenic amorphous silica as main driver for plant available water in soils

  • 1.

    Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science 8, 1147 (2017).

    • Article
    • Google Scholar
  • 2.

    Engelbrecht, B. M., Kursar, T. A. & Tyree, M. T. Drought effects on seedling survival in a tropical moist forest. Trees 19, 312–321 (2005).

    • Article
    • Google Scholar
  • 3.

    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Change Biol. 17, 2084–2094 (2011).

  • 4.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).

  • 5.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    • Article
    • Google Scholar
  • 6.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 7.

    Anjum, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6, 2026–2032 (2011).

    • Google Scholar
  • 8.

    Saxton, K. E. & Rawls, W. J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70, 1569–1578 (2006).

  • 9.

    Kern, J. S. Geographic patterns of soil water-holding capacity in the contiguous United States. Soil Sci. Soc. Am. J. 59, 1126–1133 (1995).

  • 10.

    Mahe, G., Paturel, J.-E., Servat, E., Conway, D. & Dezetter, A. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 300, 33–43 (2005).

  • 11.

    Franzluebbers, A. J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research 66, 197–205 (2002).

    • Article
    • Google Scholar
  • 12.

    Brady, N. & Weil, R. The nature and properties of soil 12th ed. (Prentice-Hall Inc. Upper Saddle River, New Jersey, US, 1999).

  • 13.

    Gong, H. & Chen, K. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum 34, 1589–1594 (2012).

  • 14.

    Pei, Z. et al. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29, 106–115 (2010).

  • 15.

    Struyf, E. et al. Historical land use change has lowered terrestrial silica mobilization. Nat. Commun. 1, 129 (2010).

  • 16.

    Carey, J. C. & Fulweiler, R. W. Human appropriation of biogenic silicon–the increasing role of agriculture. Funct. Ecol. 30, 1331–1339 (2016).

    • Article
    • Google Scholar
  • 17.

    Vandevenne, F., Struyf, E., Clymans, W. & Meire, P. Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front. Ecol. Environ. 10, 243–248 (2012).

    • Article
    • Google Scholar
  • 18.

    Haynes, R. J. A contemporary overview of silicon availability in agricultural soils. Journal of Plant Nutrition and Soil Science 177, 831–844 (2014).

  • 19.

    Iler, R. K. The chemistry of silica: solubility, polymerization, colloid and surface pro perties, and biochemistry. (Wiley, New York, US, 1979).

  • 20.

    Sommer, M., Kaczorek, D., Kuzyakov, Y. & Breuer, J. Silicon pools and fluxes in soils and landscapes – a review. J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. 169, 310–329 (2006).

  • 21.

    Puppe, D., Ehrmann, O., Kaczorek, D., Wanner, M. & Sommer, M. The protozoic Si pool in temperate forest ecosystems—Quantification, abiotic controls and interactions with earthworms. Geoderma 243, 196–204 (2015).

  • 22.

    Saccone, L. et al. Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur. J. Soil Sci. 58, 1446–1459 (2007).

  • 23.

    Matichenkov, V. & Bocharnikova, E. In Studies in Plant Science Vol. 8 eds G. H. Snyder L.E. Datnoff & G. H. Korndörfer) 209–219 (Elsevier, 2001).

  • 24.

    del Carmen Gutiérrez-Castorena, M., Stoops, G., Solorio, C. A. O. & Avila, G. L. Amorphous silica materials in soils and sediments of the Ex-Lago de Texcoco, Mexico: an explanation for its subsidence. Catena 60, 205–226 (2005).

    • Article
    • Google Scholar
  • 25.

    Sola-Rabada, A. et al. Biogenic porous silica and silicon sourced from Mexican Giant Horsetail (Equisetum myriochaetum) and their application as supports for enzyme immobilization. Colloids and Surfaces B: Biointerfaces 166, 195–202 (2018).

  • 26.

    Evonik-Industries. Aerosil – Fumed Silica Technical Overview. 104 (2018).

  • 27.

    Hang, P. T. & Brindley, G. Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clay Clay Min. 18, 203–212 (1970).

  • 28.

    Scribner, A. M., Kurtz, A. C. & Chadwick, O. A. Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides. Earth Planet. Sci. Lett. 243, 760–770 (2006).

  • 29.

    Iler, R. K. Surface and colloid science. Vol. 6 311 (Wiley, New York, 1973).

  • 30.

    Tuller, M., Or, D. & Dudley, L. M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores. Water Resources Research 35, 1949–1964 (1999).

  • 31.

    Hillel, D. Introduction to environmental soil physics. (Elsevier, Oxford, UK, 2003).

  • 32.

    Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. Fems Microbiol. Rev. 41, 599–623 (2017).

  • 33.

    Desplanques, V. et al. Silicon transfers in a rice field in Camargue (France). J. Geochem. Explor. 88, 190–193 (2006).

  • 34.

    Alexandre, A., Meunier, J.-D., Colin, F. & Koud, J.-M. Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim. Cosmochim. Acta 61, 677–682 (1997).

  • 35.

    Frings, P. J. et al. Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes. Geochim. Cosmochim. Acta 142, 132–148 (2014).

  • 36.

    Libert, B. & Franceschi, V. R. Oxalate in crop plants. J. Agric. Food Chem. 35, 926–938 (1987).

  • 37.

    Graustein, W. C., Cromack, K. & Sollins, P. Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198, 1252–1254 (1977).

  • 38.

    Certini, G., Corti, G. & Ugolini, F. C. Vertical trends of oxalate concentration in two soils under Abies alba from Tuscany (Italy). Journal of Plant Nutrition and Soil Science 163, 173–177 (2000).

  • 39.

    Smith, K. T., Shortle, W. C., Connolly, J. H., Minocha, R. & Jellison, J. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environ. Exp. Bot. 67, 277–283 (2009).

  • 40.

    Hodnett, M. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).

  • 41.

    Fontes, J., Gonçalves, M. & Pereira, L. Andosols of Terceira, Azores: measurement and significance of soil hydraulic properties. Catena 56, 145–154 (2004).

  • 42.

    Parr, J. F., Dolic, V., Lancaster, G. & Boyd, W. E. A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology 116, 203–212 (2001).

    • Article
    • Google Scholar
  • 43.

    DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

  • 44.

    Peters, A., Iden, S. C. & Durner, W. Revisiting the simplified evaporation method: Identification of hydraulic functions considering vapor, film and corner flow. J. Hydrol. 527, 531–542 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Brainstorming energy-saving hacks on Satori, MIT’s new supercomputer

    Maintaining the equipment that powers our world