
Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16, 1311–1318, https://doi.org/10.1890/1051-0761(2006)016[1311:Tcopef]2.0.Co;2 (2006).
Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784, https://doi.org/10.2307/1313099 (1997).
Dewson, Z. S., James, A. B. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J N Am Benthol Soc 26, 401–415, https://doi.org/10.1899/06-110.1 (2007).
Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience 340, 629–643 (2008).
Nilson, E. & Krahe, P. Zur Berechnung von Wasserbilanzen in Mitteleuropa im Zeichen des Klimawandels. (2014).
Alfieri, L., Burek, P., Feyen, L. & Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences 19, 2247 (2015).
Stagl, J. C. & Hattermann, F. F. Impacts of climate change on riverine ecosystems: alterations of ecologically relevant flow dynamics in the Danube River and its major tributaries. Water 8, 566 (2016).
Kundzewicz, Z. W. et al. Summer floods in Central Europe–climate change track? Natural Hazards 36, 165–189 (2005).
Poff, N. L., Pyne, M. I., Bledsoe, B. P., Cuhaciyan, C. C. & Carlisle, D. M. Developing linkages between species traits and multiscaled environmental variation to explore vulnerability of stream benthic communities to climate change. Journal of the North American Benthological Society 29, 1441–1458, https://doi.org/10.1899/10-030.1 (2010).
Kakouei, K., Kiesel, J., Kail, J., Pusch, M. & Jähnig, S. C. Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecol Indic 79, 163–172, https://doi.org/10.1016/j.ecolind.2017.04.029 (2017).
Poff, N. L. & Zimmerman, J. K. H. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55, 194–205 (2010).
Pyne, M. I. & Poff, N. L. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Global Change Biology 23, 77–93 (2017).
Kakouei, K. et al. Projected effects of climate‐change‐induced flow alterations on stream macroinvertebrate abundances. Ecology and evolution 8, 3393–3409 (2018).
Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci USA 106, 19729–19736, https://doi.org/10.1073/pnas.0901639106 (2009).
Bush, A. A. et al. Continental-scale assessment of risk to the Australian Odonata from climate change. PloS one 9(2) (2014).
Kim, J., Choi, J., Choi, C. & Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of the Total Environment 452, 181–195 (2013).
Yan, D., Werners, S. E., Ludwig, F. & Huang, H. Q. Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Journal of Hydrology: Regional Studies 4, 228–245 (2015).
Melsen, L. A. et al. Mapping (dis) agreement in hydrologic projections. Hydrology and Earth System Sciences 22, 1775–1791 (2018).
Addor, N. et al. Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research 50, 7541–7562 (2014).
Wang, J. et al. Evaluating four downscaling methods for assessment of climate change impact on ecological indicators. Environmental modelling & software 96, 68–82 (2017).
Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55, 147–170 (2010).
Chessman, B. C. Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshwater Biology 60, 50–63 (2015).
Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biological Conservation 160, 40–49 (2013).
Schmidt-Kloiber, A. & Hering, D. www. freshwaterecology. info–An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological indicators 53, 271–282 (2015).
Domisch, S. et al. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 19, 752–762 (2013).
Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change 14, 563–578 (2014).
Guse, B., Reusser, D. E. & Fohrer, N. How to improve the representation of hydrological processes in SWAT for a lowland catchment–temporal analysis of parameter sensitivity and model performance. Hydrological processes 28, 2651–2670 (2014).
Arnold, J. G., Srinivasan, R., Muttiah, R. S. & Williams, J. R. Vol. 34 73–89 (Wiley Online Library, JAWRA Journal of the American Water Resources Association, 1998).
Kiesel, J. et al. Improving hydrological model optimization for riverine species. Ecological Indicators 80, 376–385 (2017).
Pfannerstill, M., Guse, B. & Fohrer, N. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology 510, 447–458 (2014).
Kling, H., Fuchs, M. & Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology 424, 264–277 (2012).
Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology 377, 80–91 (2009).
Kiesel, J. et al. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecological engineering 127, 404–416 (2019).
Olden, J. D. & Poff, N. L. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications 19, 101–121, https://doi.org/10.1002/Rra.700 (2003).
Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365, 2053–2075 (2007).
R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria., 2016).
Sokal, R. & Rohlf, F. The principles and practice of statistics in biological research. (Freeman, WH, 1981).
Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3, 369 (2013).
Zhang, H. & Huang, G. H. Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation. Climate dynamics 40, 805–821 (2013).
Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Science of the Total Environment 621, 588–599 (2018).
Lawrence, J. E. et al. Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. Journal of the North American Benthological Society 29, 1424–1440 (2010).
Theodoropoulos, C., Vourka, A., Stamou, A., Rutschmann, P. & Skoulikidis, N. Response of freshwater macroinvertebrates to rainfall-induced high flows: A hydroecological approach. Ecological indicators 73, 432–442 (2017).
Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).
Buth, M. et al. Vulnerabilität Deutschlands gegenüber dem Klimawandel. Clim Chang 24, 2015 (2015).
Eckhardt, K. & Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology 284, 244–252 (2003).
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges in combining projections from multiple climate models. Journal of Climate 23, 2739–2758 (2010).
Gleckler, P. J., Taylor, K. E. & Doutriaux, C. Performance metrics for climate models. Journal of Geophysical Research: Atmospheres 113 (2008).
Jung, I., Bae, D. & Lee, B. Possible change in Korean streamflow seasonality based on multi-model climate projections. Hydrological Processes 27, 1033–1045 (2013).
Kotlarski, S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model. Development 7, 1297–1333 (2014).
Kakouei, K. et al. Projected effects of climate-change-induced flow alterations on stream macroinvertebrate abundances. Ecology and Evolution. https://doi.org/10.1002/ece3.3907 (2018).
Schmutz, S. & Sendzimir, J. Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future. Vol. 8 (Springer, 2018).
Jungwirth, M., Muhar, S. & Schmutz, S. (Eds.) Assessing the Ecological Integrity of Running Waters: Proceedings of the International Conference, Held in Vienna, Austria, 9–11 November 1998 (Vol. 149). Springer Science & Business Media (2012).
Buisson, L., Thuiller, W., Lek, S., Lim, P. & Grenouillet, G. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14, 2232–2248 (2008).
Wallace, J. B., Eggert, S. L., Meyer, J. L. & Webster, J. R. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277, 102–104 (1997).
Graça, M. A. The role of invertebrates on leaf litter decomposition in streams–a review. International Review of Hydrobiology 86, 383–393 (2001).
Hering, D. et al. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51, 1757–1785 (2006).
Kakouei, K. Predicting potential ecological effects of flow alterations using quantitative flow preferences of stream macroinvertebrates Doctoral thesis: https://refubium.fu-berlin.de/bitstream/handle/fub188/23508/Thesis_Kakouei.pdf?isAllowed=y&sequence=4 (2018).
Source: Ecology - nature.com