in

A record of seafloor methane seepage across the last 150 million years

  • 1.

    Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7, 657–661 (2014).

  • 2.

    Johnson, H. P. et al. Anomalous Concentration of Methane Emissions at the Continental Shelf Edge of the Northern Cascadia Margin. J. Geophys. Res. Solid Earth 1–15 https://doi.org/10.1029/2018jb016453. (2019)

  • 3.

    Sen, A. et al. Atypical biological features of a new cold seep site on the Lofoten-Vesterålen continental margin (northern Norway). Sci. Rep. 9, 1–14 (2019).

  • 4.

    Karstens, J. et al. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation. Nat. Commun. 9, 635 (2018).

  • 5.

    Dickens, G. Hydrocarbon-driven warming. Nature 429, 513–515 (2004).

  • 6.

    Reeburgh, W. Oceanic methane biogeochemistry. Am. Chem. Soc. 107, 486–513 (2007).

    • CAS
    • Google Scholar
  • 7.

    Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

  • 8.

    Berndt, C. et al. Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard. Science 343, 284–288 (2014).

  • 9.

    Gutjahr, M. et al. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548, 573–577 (2017).

  • 10.

    Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).

  • 11.

    Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6, 725–734 (2013).

  • 12.

    Schmale, O., Greinert, J. & Rehder, G. Methane emission from high-intensity marine gas seeps in the Black Sea into the atmosphere. Geophys. Res. Lett. 32, (2005).

  • 13.

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

  • 14.

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

  • 15.

    Luff, R. & Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances. Geochim. Cosmochim. Acta 67, 3403–3421 (2003).

  • 16.

    Oppo, D., Capozzi, R., Picotti, V. & Ponza, A. A genetic model of hydrocarbon-derived carbonate chimneys in shelfal fine-grained sediments: The Enza River field, Northern Apennines (Italy). Mar. Pet. Geol. 66, 555–565 (2015).

  • 17.

    Reitner, J. et al. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 18–30 (2005).

    • Article
    • Google Scholar
  • 18.

    Judd, A. G. et al. The geological methane budget at Continental Margins and its influence on climate change. Geofluids 2, 109–126 (2002).

  • 19.

    Capozzi, R., Oppo, D. & Taviani, M. Cold seepages: An economic tool for hydrocarbon appraisal. AAPG Bull. 101, 617-623 (2017).

  • 20.

    Kiel, S. Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21, 279–284 (2009).

  • 21.

    Miller, K. G., Mountain, G., Wright, J. & Browning, J. V. A 180-Million-Year Record of Sea Level and Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records. Oceanography 24, 40–53 (2011).

    • Article
    • Google Scholar
  • 22.

    Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

  • 23.

    Muller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics. Science 319, 1357–1362 (2008).

  • 24.

    Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J. Geophys. Res. Oceans 116, 1–23 (2011).

  • 25.

    Li, G. & Elderfield, H. Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta 103, 11–25 (2013).

  • 26.

    Dean, J. F. et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophys. 56, 207–250 (2018).

  • 27.

    Andreassen, K. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 356, 948–953 (2017).

  • 28.

    Kirkham, C., Cartwright, J., Hermanrud, C. & Jebsen, C. The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 482, 434–445 (2018).

  • 29.

    Gay, A. et al. 3D morphology and timing of the giant fossil pockmark of Beauvoisin, SE Basin of France. J. Geol. Soc. 176, 61-77 (2018)

  • 30.

    Oppo, D. & Capozzi, R. Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan. Basin Res. 28, 827–839 (2016).

  • 31.

    Agirrezabala, L. M., Kiel, S., Blumenberg, M., Schäfer, N. & Reitner, J. Outcrop analogues of pockmarks and associated methane-seep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeogr. Palaeoclimatol. Palaeoecol. 390, 94–115 (2013).

    • Article
    • Google Scholar
  • 32.

    Ruppel, C. D. & Kessler, J. D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–168 (2017).

  • 33.

    Bangs, N. L. B., Musgrave, R. J. & Tréhu, A. M. Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. J. Geophys. Res. Solid Earth 110, (2005).

  • 34.

    Xu, W. & Ruppel, C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J. Geophys. Res. Solid Earth 104, 5081–5095 (1999).

  • 35.

    Dickens, G. R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65, 529–543 (2001).

  • 36.

    Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396-399 (2005).

  • 37.

    Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004).

  • 38.

    Reitner, J., Peckmann, J., Reimer, A., Schumann, G. & Thiel, V. Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51, 66–79 (2005).

    • Article
    • Google Scholar
  • 39.

    Birgel, D. & Peckmann, J. Aerobic methanotrophy at ancient marine methane seeps: A synthesis. Org. Geochem. 39, 1659–1667 (2008).

  • 40.

    Peckmann, J. & Thiel, V. Carbon cycling at ancient methane–seeps. Chem. Geol. 205, 443–467 (2004).

  • 41.

    Feng, D. et al. Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chem. Geol. 385, 129–139 (2014).

  • 42.

    Talbot, H. M. et al. Variability in aerobic methane oxidation over the past 1.2Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochim. Cosmochim. Acta 133, 387–401 (2014).

  • 43.

    Panieri, G. et al. Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps. Earth Planet. Sci. Lett. 458, 203–212 (2017).

  • 44.

    Panieri, G., Graves, C. A. & James, R. H. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard. Geochem. Geophys. Geosystems 17, 521–537 (2016).

  • 45.

    Martin, R. A., Nesbitt, E. A. & Campbell, K. A. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Mar. Geol. 272, 270–284 (2010).

  • 46.

    Hill, T. M. et al. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Proc. Natl. Acad. Sci. 103, 13570–13574 (2006).

  • 47.

    Yamamoto, M., Yamamuro, M. & Tada, R. Late quaternary records of organic carbon, calcium carbonate, and biomarkers from site 1016 off Point Conception, California margin. Proc. Ocean Drill. Program Sci. Results 167, 183–194 (2000).

    • CAS
    • Google Scholar
  • 48.

    Jiang, G., Kennedy, M. J. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003).

  • 49.

    Teichert, B. M. A. et al. U/Th Systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations. Geochim. Cosmochim. Acta 67, 3845–3857 (2003).

  • 50.

    Bayon, G., Henderson, G. M. & Bohn, M. U–Th stratigraphy of a cold seep carbonate crust. Chem. Geol. 260, 47–56 (2009).

  • 51.

    Kiel, S., Hansen, C., Nitzsche, K. N. & Hansen, B. T. Using 87 Sr/86 Sr Ratios to Date Fossil Methane Seep Deposits: Methodological Requirements and an Example from the Great Valley Group, California. J. Geol. 122, 353–366 (2014).

  • 52.

    Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. & Dhuime, B. A Matter of Preservation. Science 323, 49–50 (2009).

  • 53.

    Dunhill, A. M., Hannisdal, B. & Benton, M. J. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nat. Commun. 5, 4818 (2014).

  • 54.

    Peters, S. E. Environmental determinants of extinction selectivity in the fossil record. Nature 454, 626–629 (2008).

  • 55.

    Kiel, S. et al. Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 390, 17–34 (2013).

    • Article
    • Google Scholar
  • 56.

    Peters, S. E. & Foote, M. Determinants of extinction in the fossil record. Nature 416, 420–424 (2002).

  • 57.

    Luff, R., Wallmann, K. & Aloisi, G. Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet. Sci. Lett. 221, 337–353 (2004).

  • 58.

    Mentaschi, L. et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 20, 3527–3547 (2016).

  • 59.

    Wortmann, U. G. & Paytan, A. Rapid Variability of Seawater Chemistry Over the Past 130 Million Years. Science 337, 334–336 (2012).

  • 60.

    Husson, J. M. & Peters, S. E. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460, 68–75 (2017).

  • 61.

    Davies, R. J., Maqueda, M. Á. M., Li, A. & Ganopolski, A. Millennial-scale shifts in the methane hydrate stability zone due to Quaternary climate change. Geology 45, 1027–1030 (2017).

  • 62.

    Dzyuba, O. S., Izokh, O. P. & Shurygin, B. N. Carbon isotope excursions in Boreal Jurassic–Cretaceous boundary sections and their correlation potential. Palaeogeogr. Palaeoclimatol. Palaeoecol. 381–382, 33–46 (2013).

    • Article
    • Google Scholar
  • 63.

    Jahren, A. H., Arens, N. C., Sarmiento, G., Guerrero, J. & Amundson, R. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29, 159–162 (2001).

  • 64.

    Cui, Y. et al. Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 4, 481–485 (2011).

  • 65.

    Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

  • 66.

    Katz, M. E. The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science 286, 1531–1533 (1999).

  • 67.

    Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1–14 (2003).

    • Article
    • Google Scholar
  • 68.

    DeConto, R. M. et al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87–91 (2012).

  • 69.

    Frieling, J. et al. Thermogenic methane release as a cause for the long duration of the PETM. Proc. Natl. Acad. Sci. 113, 12059–12064 (2016).

  • 70.

    Carozza, D. A., Mysak, L. A. & Schmidt, G. A. Methane and environmental change during the Paleocene-Eocene thermal maximum (PETM): Modeling the PETM onset as a two-stage event. Geophys. Res. Lett. 38, L05702 (2011).

  • 71.

    Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

  • 72.

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  • 73.

    Etiope, G. Natural Gas Seepage: The Earth’s Hydrocarbon Degassing. (Springer International Publishing, 2015).

  • 74.

    Watanabe, Y., Nakai, S., Hiruta, A., Matsumoto, R. & Yoshida, K. U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth Planet. Sci. Lett. 272, 89–96 (2008).

  • 75.

    Tong, H. et al. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar. Pet. Geol. 43, 260–271 (2013).

  • 76.

    Wallmann, K. et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Commun. 9, 83 (2018).

  • 77.

    Bayon, G. et al. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat. Geosci. 6, 755–760 (2013).

  • 78.

    Trincardi, F., Cattaneo, A., Correggiari, A. & Ridente, D. Evidence of soft sediment deformation, fluid escape, sediment failure and regional weak layers within the late Quaternary mud deposits of the Adriatic Sea. Mar. Geol. 29, 91–119 (2004).

  • 79.

    Oppo, D., Capozzi, R. & Picotti, V. A new model of the petroleum system in the Northern Apennines, Italy. Mar. Pet. Geol. 48, 57–76 (2013).

  • 80.

    Hantschel, T. & Kauerauf, A. I. Fundamentals of Basin and Petroleum Systems Modeling. (Springer, Berlin, Heidelberg, 2009)

  • 81.

    Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).

  • 82.

    Rampino, M. R. & Caldeira, K. Episodes Of Terrestrial Geologic Activity During The Past 260 Million Years: A Quantitative Approach. In Dynamics and Evolution of Minor Bodies with Galactic and Geological Implications (eds. Clube, S. V. M., Yabushita, S. & Henrard, J.) 143–159 (Springer Netherlands, 1992).

  • 83.

    Rampino, M. R. & Caldeira, K. Periodic impact cratering and extinction events over the last 260 million years. Mon. Not. R. Astron. Soc. 454, 3480–3484 (2015).

  • 84.

    Boulila, S. Coupling between Grand cycles and Events in Earth’s climate during the past 115 million years. Sci. Rep. 9, 327 (2019).

  • 85.

    Boulila, S., Galbrun, B., Laskar, J. & Pälike, H. A ~9myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link? Earth Planet. Sci. Lett. 317–318, 273–281 (2012).

  • 86.

    Martinez, M. & Dera, G. Orbital pacing of carbon fluxes by a 9-My eccentricity cycle during the Mesozoic. Proc. Natl. Acad. Sci. 112, 12604–12609 (2015).

  • 87.

    Middelburg, J. J. & Levin, L. A. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 1273–1293 (2009).

  • 88.

    Yamamoto, A., Yamanaka, Y., Oka, A. & Abe-Ouchi, A. Ocean oxygen depletion due to decomposition of submarine methane hydrate. Geophys. Res. Lett. 41, 5075–5083 (2014).

  • 89.

    Pohlman, J. W. et al. Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proc. Natl. Acad. Sci. 114, 5355–5360 (2017).

  • 90.

    Kiel, S. & Peckmann, J. Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis. PLOS ONE 14, e0221887 (2019).

  • 91.

    Ing, C.-K. & Wei, C.-Z. Order selection for same-realization predictions in autoregressive processes. Ann. Stat. 33, 2423–2474 (2005).

  • 92.

    Rabiner, L. On the use of autocorrelation analysis for pitch detection. IEEE Trans. Acoust. Speech Signal Process. 25, 24–33 (1977).

    • Article
    • Google Scholar
  • 93.

    Manolakis, D. G. & Ingle, V. K. Applied digital signal processing: theory and practice. (New York: Cambridge University Press, 2011).


  • Source: Ecology - nature.com

    Half of U.S. deaths related to air pollution are linked to out-of-state emissions

    Evolutionary conservation of within-family biodiversity patterns