
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).
Mandalakis, M. et al. Microbial strains isolated from CO2-venting Kolumbo submarine volcano show enhanced co-tolerance to acidity and antibiotics. Mar. Env. Res. 144, 102–110, https://doi.org/10.1016/j.marenvres.2019.01.002 (2019).
Mostofa, K. M. G. et al. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences 13, 1767–1786, https://doi.org/10.5194/bg-13-1767-2016 (2016).
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896, https://doi.org/10.1111/gcb.12179 (2013).
Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434, https://doi.org/10.1111/j.1461-0248.2010.01518.x (2010).
Hofmann, G. E. et al. The Effect of Ocean Acidification on Calcifying Organisms in Marine Ecosystems: An Organism-to-Ecosystem Perspective. Annu. Rev. Ecology, Evolution, Syst. 41, 127–147, https://doi.org/10.1146/annurev.ecolsys.110308.120227 (2010).
Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Chang. Biol. 21, 2122–2140, https://doi.org/10.1111/gcb.12833 (2015).
Byrne, M. Impact of Ocean Warming and Ocean Acidification on Marine Invertebrate Life History Stages: Vulnerabilities and Potential for Persistence in a Changing Ocean. Oceanography Mar. Biology: An. Annu. Rev. 49, 1–42 (2011).
Wolfe, K., Dworjanyn, S. A. & Byrne, M. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Glob. Chang. Biol. 19, 2698–2707, https://doi.org/10.1111/gcb.12249 (2013).
Byrne, M., Lamare, M., Winter, D., Dworjanyn, S. A. & Uthicke, S. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120439, https://doi.org/10.1098/rstb.2012.0439 (2013).
Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One 8, e82938, https://doi.org/10.1371/journal.pone.0082938 (2013).
Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280, https://doi.org/10.1038/nclimate2479 (2014).
Stumpp, M. et al. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proc. Natl Acad. Sci. USA 109, 18192–18197, https://doi.org/10.1073/pnas.1209174109 (2012).
Milazzo, M. et al. Ocean acidification impairs vermetid reef recruitment. Sci. Rep. 4, 4189, https://doi.org/10.1038/srep04189 (2014).
Doropoulos, C. & Diaz-Pulido, G. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser. 475, 93–99, https://doi.org/10.3354/meps10096 (2013).
Webster, N. S., Uthicke, S., Botte, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Chang. Biol. 19, 303–315, https://doi.org/10.1111/gcb.12008 (2013).
Albright, R., Mason, B., Miller, M. & Langdon, C. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc. Natl Acad. Sci. USA 107, 20400–20404, https://doi.org/10.1073/pnas.1007273107 (2010).
Nakamura, M., Ohki, S., Suzuki, A. & Sakai, K. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6, e14521, https://doi.org/10.1371/journal.pone.0014521 (2011).
Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843, https://doi.org/10.1007/s00227-012-1921-x (2013).
Espinel-Velasco, N. et al. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: a review. Mar. Ecol. Prog. Ser. 606, 237–257, https://doi.org/10.3354/meps12754 (2018).
Whalan, S. & Webster, N. S. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci. Rep. 4, 4072, https://doi.org/10.1038/srep04072 (2014).
Hadfield, M. G. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann. Rev. Mar. Sci. 3, 453–470, https://doi.org/10.1146/annurev-marine-120709-142753 (2011).
Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc Biol Sci 281, https://doi.org/10.1098/rspb.2013.3086 (2014).
Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102, https://doi.org/10.1016/j.jembe.2006.08.012 (2007).
Nelson, K. S., Liddy, M. & Lamare, M. D. Embryology, larval development, settlement and metamorphosis in the New Zealand Serpulid Polychaete Galeolaria hystrix. Invertebrate Reprod. Dev. 61, 207–217, https://doi.org/10.1080/07924259.2017.1318183 (2017).
Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6, e28983, https://doi.org/10.1371/journal.pone.0028983 (2011).
Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nat. 425, 365, https://doi.org/10.1038/425365a (2003).
McDonald, M. R. et al. Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar. Ecol. Prog. Ser. 385, 179–187, https://doi.org/10.3354/meps08099 (2009).
García, E. et al. Robustness of Paracentrotus lividus larval and post-larval development to pH levels projected for the turn of the century. Mar. Biol. 162, 2047–2055, https://doi.org/10.1007/s00227-015-2731-8 (2015).
Jansson, A., Lischka, S., Boxhammer, T., Schulz, K. G. & Norkko, J. Larval development and settling of Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels. Biogeosciences Discuss. 12, 20411–20435, https://doi.org/10.5194/bgd-12-20411-2015 (2015).
Pecquet, A., Dorey, N. & Chan, K. Y. K. Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. Mar. Pollut. Bull. 124, 903–910, https://doi.org/10.1016/j.marpolbul.2017.02.057 (2017).
Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nat. 454, 96–99, https://doi.org/10.1038/nature07051 (2008).
Cigliano, M., Gambi, M. C., Rodolfo-Metalpa, R., Patti, F. P. & Hall-Spencer, J. M. Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar. Biol. 157, 2489–2502, https://doi.org/10.1007/s00227-010-1513-6 (2010).
Lidbury, I., Johnson, V., Hall-Spencer, J. M., Munn, C. B. & Cunliffe, M. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Mar. Pollut. Bull. 64, 1063–1066, https://doi.org/10.1016/j.marpolbul.2012.02.011 (2012).
Ricevuto, E., Kroeker, K. J., Ferrigno, F., Micheli, F. & Gambi, M. C. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Mar. Biol. 161, 2909–2919, https://doi.org/10.1007/s00227-014-2555-y (2014).
Fabricius, K. E., Kluibenschedl, A., Harrington, L., Noonan, S. & De’ath, G. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci. Rep. 5, 9537, https://doi.org/10.1038/srep09537 (2015).
Lamare, M. D., Liddy, M. & Uthicke, S. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Proc Biol Sci 283, https://doi.org/10.1098/rspb.2016.1506 (2016).
Raulf, F. F. et al. Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea. Env. Microbiol. 17, 3678–3691, https://doi.org/10.1111/1462-2920.12729 (2015).
Lindh, M. V. et al. Consequences of increased temperature and acidification on bacterioplankton community composition during a mesocosm spring bloom in the Baltic Sea. Env. Microbiol. Rep. 5, 252–262, https://doi.org/10.1111/1758-2229.12009 (2013).
Baltar, F. et al. Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiol Ecol 91, https://doi.org/10.1093/femsec/fiv058 (2015).
Kroeker, K. J., Micheli, F. & Gambi, M. C. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat. Clim. Change 3, 156–159, https://doi.org/10.1038/nclimate1680 (2012).
Johnson, C. R. & Sutton, D. C. Bacteria on the Surface of Crustose Coralline Algae Induce Metamorphosis of the Crown-of-Thorns Starfish Acanthaster Planci. Mar. Biol. 120, 305–310, https://doi.org/10.1007/Bf00349692 (1994).
Hadfield, M. & Paul, V. in Marine Chemical Ecology Marine Science 431–461 (2001).
Huggett, M. J., Williamson, J. E., de Nys, R., Kjelleberg, S. & Steinberg, P. D. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149, 604–619, https://doi.org/10.1007/s00442-006-0470-8 (2006).
Pearce, C. M. & Scheibling, R. E. Induction of Metamorphosis of Larvae of the Green Sea Urchin, Strongylocentrotus droebachiensis, by Coralline Red Algae. Biol. Bull. 179, 304–311, https://doi.org/10.2307/1542322 (1990).
Toupoint, N. et al. Effect of biofilm age on settlement of Mytilus edulis. Biofouling 28, 985–1001, https://doi.org/10.1080/08927014.2012.725202 (2012).
Ross, P. M., Parker, L., O’Connor, W. A. & Bailey, E. A. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms. Water 3, 1005–1030, https://doi.org/10.3390/w3041005 (2011).
Kurihara, H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 373, 275–284, https://doi.org/10.3354/meps07802 (2008).
Samad, M. S. et al. Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria. Mol. Ecol. 26, 5500–5514, https://doi.org/10.1111/mec.14275 (2017).
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8 (2012).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336, https://doi.org/10.1038/nmeth.f.303 (2010).
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59, https://doi.org/10.1038/nmeth.2276 (2013).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–596, https://doi.org/10.1093/nar/gks1219 (2013).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinforma. 26, 2460–2461, https://doi.org/10.1093/bioinformatics/btq461 (2010).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217, https://doi.org/10.1371/journal.pone.0061217 (2013).
Oksanen, J., et al Vegan: Community Ecology Package, R package, v. 2.4–6 (2018).
Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinforma. 22, 1540–1542, https://doi.org/10.1093/bioinformatics/btl117 (2006).
Source: Ecology - nature.com