in

Importance of suspended particulate organic matter in the diet of Nephrops norvegicus (Linnaeus, 1758)

  • 1.

    FAO. FishStatJ: software for fishery statistical season series. Available at, http://www.fao.org/fishery/statistics/en (Accessed: 01/09/2019) (2016).

  • 2.

    Anon. The Stock Book -Annual Review for Fish Stocks in 2011 with Management Advice for 2012. The Marine Institute, 494pp (2011).

  • 3.

    Lordan, C. et al. Porcupine Bank Nephrops Grounds (FU16) 2013 UWTV Survey Report and catch options for 2014 Available at, http://hdl.handle.net/10793/912 (Accessed: 01/09/2019) (2013).

  • 4.

    Hobday, A. J. et al. Ecological risk assessment for the effects of fishing. Fish. Res. 108, 372–384 (2011).

    • Article
    • Google Scholar
  • 5.

    Johnson, M. P., Lordan, C. & Power, A. M. Habitat and ecology of N. norvegicus. Adv. Mar. Biol. 64, 27–63 (2013).

  • 6.

    Möllmann, C. et al. Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES J. Mar. Sci. 71, 1187–1197 (2014).

    • Article
    • Google Scholar
  • 7.

    Chapman, C. J. & Rice, A. L. Some direct observations on the ecology and behaviour of the Norway lobster Nephrops norvegicus. Mar. Biol. 10, 321–329 (1971).

    • Article
    • Google Scholar
  • 8.

    Parslow-Williams, P., Goodheir, C., Atkinson, R. J. A. & Taylor, A. C. Feeding energetics of the Norway lobster, Nephrops norvegicus in the Firth of Clyde, Scotland. Ophelia 56, 101–120 (2002).

    • Article
    • Google Scholar
  • 9.

    Bell, T., Tuck, I. & Dobby, H. Nephrops Species. In Lobsters: Biology, Management, Aquaculture and Fisheries (ed. Phillips, B. F.) 357–413 (John Wiley & Sons Ltd, 2013).

  • 10.

    Watts, A. J. R., Albalat, A., Smith, I. P., Atkinson, R. J. A. & Neil, D. M. Seasonal nutritional status in Norway lobsters, Nephrops norvegicus (L.): are females nutritionally compromised over the winter? Mar. Biol. Res. 12, 563–572 (2016).

    • Article
    • Google Scholar
  • 11.

    Gual-Frau, A. & Gallardo-Cabello, M. Analisis de la frecuencia y habitos alimenticios de la ‘Cigala’; Nephrops norvegicus (Linneo, 1758) en el mediterraneo occidental (Crustacea: Nephropsidae). An. Inst. Cienc. del Mar y Limnol. Univ. Nal. Autón. México 15(1), 151–165 (1988).

    • Google Scholar
  • 12.

    Cristo, M. & Cartes, J. E. A comparative study of the feeding ecology of Nephrops norvegicus (L.), (Decapoda: Nephropidae) in the bathyal Mediterranean and the adjacent Atlantic. Sci. Mar. 62, 81–90 (1998).

    • Article
    • Google Scholar
  • 13.

    Loo, L. O., Baden, S. P. & Ulmestrand, M. Suspension feeding in adult Nephrops norvegicus (L.) and Homarus gammarus (L.) (Decapoda). Neth. J. Sea Res. 31, 291–297 (1993).

    • Article
    • Google Scholar
  • 14.

    Loc’h, F. L. & Hily, C. Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (Northeast Atlantic). Can. J. Fish. Aquat. Sci. 62, 123–132 (2005).

    • Article
    • Google Scholar
  • 15.

    Watts, A. J. R. Nutritional status and trophic dynamics of the Norway lobster Nephrops norvegicus (L.) (PhD Thesis). University of Glasgow Available at, http://theses.gla.ac.uk/id/eprint/3335 (Accessed: 01/09/2019) (2012).

  • 16.

    Powell, A. & Eriksson, S. P. Reproduction: Life Cycle, Larvae and Larviculture. Adv. Mar. Biol. 64, 201–245 (2013).

  • 17.

    de Figueiredo, M. J. & Thomas, H. J. On the biology of the Norway Lobster, Nephrops norvegicus (L.). J. Cons. Perm. Int. Explor. Mer. 31, 89–101 (1967).

    • Article
    • Google Scholar
  • 18.

    Sardà, F. Reproduction and Moult Synchronism in Nephrops norvegicus (L.) (Decapoda, Nephropidae) in the Western Mediterranean: Is Spawning Annual or Biennial? Crustaceana 60, 186–199 (1991).

    • Article
    • Google Scholar
  • 19.

    Sardà, F. A review (1967–1990) of some aspects of the life history of Nephrops norvegicus. ICES Mar. Sci. Symp. 199, 78–88 (1995).

    • Google Scholar
  • 20.

    Haynes, P. S. et al. Growth in Nephrops norvegicus from a tag-recapture experiment. Sci. Rep. 6, 1–11 (2016).

  • 21.

    Pinet, P. R. Invitation to Oceanography (Third ed.) 323–360 (Jones and Bartlett Publishers Inc., 2003).

  • 22.

    O’Boyle, S. & Silke, J. A review of phytoplankton ecology in estuarine and coastal waters around Ireland. J. Plankton Res. 32, 99–118 (2010).

  • 23.

    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep-Sea. Research II. 59–60, 208–221 (2012).

    • Google Scholar
  • 24.

    Harmelin-Vivien, M. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont. Shelf Res. 28(15), 1911–1919 (2008).

  • 25.

    Wieczorek, A. M., Power, A. M. & Browne, P. C. T. Stable-isotope analysis reveals the importance of soft-bodied prey in the diet of lesser spotted dogfish Scyliorhinus canicula. J. Fish Biol. 93, 685–693 (2018).

  • 26.

    Fry, B. Stable Isotope Ecology. 173–176 (Springer Science+Business Media, 2006).

  • 27.

    Ben-David, M., Flynn, R. W. & Schell, D. M. Annual and seasonal changes in diets of martens: evidence from stable isotope analysis. Oecologia 111, 280–291 (1997).

  • 28.

    Carrasco, N. K. & Perissinotto, R. Spatial and temporal variations in the diet of the mysid Mesopodopsis africana in the St. Lucia Estuary (South Africa). MEPS 417, 127–138 (2010).

  • 29.

    Fanelli, E. et al. Food partitioning and diet temporal variation in two coexisting sparids, Pagellus erythrinus and Pagellus acarne. J. Fish Biol. 78, 869–900 (2011).

  • 30.

    Negrete, P. et al. Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: Are foraging habits impacted by environmental change? Polar Biol. 40, 903–916 (2016).

    • Article
    • Google Scholar
  • 31.

    Segura-García, I., Briones-Fourzán, P., de Lestang, S. & Lozano-Álvarez, E. Dietary partitioning between sympatric species of spiny lobster in a coral reef system. Bull Mar Sci. 92, 355–369 (2016).

    • Article
    • Google Scholar
  • 32.

    Villegas, M., Newsome, S. D. & Blake, J. G. Seasonal patterns in δ2H values of multiple tissues from Andean birds provide insights into elevational migration. Ecol. Appl. 26, 2383–2389 (2016).

    • Article
    • Google Scholar
  • 33.

    Bosley, K. M., Copeman, L. A., Dumbauld, B. R. & Bosley, K. L. Identification of burrowing shrimp food sources along an estuarine gradient using fatty acid analysis and stable isotope ratios. Estuar. Coast. 40, 1113–1130 (2017).

  • 34.

    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 115 (2017).

  • 35.

    Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).

    • Article
    • Google Scholar
  • 36.

    Hickman, C. P. Jr., Roberts, L. S. & Larson, A. Integrated Principles of Zoology (Ninth ed.) 489–512 (Wm. C. Brown Communications Inc., 1995).

  • 37.

    Mente, E., Carter, C. G., Barnes, R. S. & Karapanagiotidis, I. T. Protein synthesis in wild-caught Norway lobster (Nephrops norvegicus L.). J. Exp. Mar. Biol. Ecol. 409, 208–214 (2011).

  • 38.

    Rotllant, G. et al. The effects of seasonal variation on the nutritional condition of Nephrops norvegicus (Astacidea: Nephropidae) from wild populations in the western Mediterranean. J. Mar. Biol. Assoc. UK. 94, 763–773 (2014).

  • 39.

    Watts, A. J. R., McGill, R. A. R., Albalat, A. & Neil, D. M. Biophysical and biochemical changes occur in Nephrops norvegicus during starvation. J. Exp. Mar. Biol. Ecol. 457, 81–89 (2014).

  • 40.

    Riley, G. A. Particulate Organic Matter in Sea Water. Adv. Mar. Biol. 8, 1–118 (1971).

    • Article
    • Google Scholar
  • 41.

    Darnaude, A. M. Fish ecology and terrestrial carbon use in coastal areas: implications for marine fish production. J. Anim. Ecol. 74, 864–876 (2005).

    • Article
    • Google Scholar
  • 42.

    Ziolkowska, M., Sokołowski, A. & Pierre, R. Spatial and temporal variability of organic matter sources and food web structure across benthic habitats in a low diversity system (southern Baltic Sea). J. Sea Res. 141, 47–60 (2018).

    • Article
    • Google Scholar
  • 43.

    Hill, J. M. Structure and flow of carbon and nitrogen to the western Irish Sea Nephrops norvegicus fishery: a stable isotope approach (PhD Thesis). Queen Mary University of London Available at, http://qmro.qmul.ac.uk/xmlui/handle/123456789/1483 (Accessed: 01/09/2019) (2007).

  • 44.

    Merder, J. et al. Density dependent growth in ‘catch-and-wait’ fisheries explains body size differences in Nephrops norvegicus. Ambio. https://doi.org/10.1007/s13280-019-01158-1 (2019).

  • 45.

    Power, A.M. et al. Field recorded data on habitat, density, growth and movement of Nephrops norvegicus. Scientific Data, https://doi.org/10.1038/s41597-019-0013-x (2019).

  • 46.

    Katoh, E., Sbragaglia, V., Aguzzi, J. & Breithaupt, T. Sensory Biology and Behaviour of Nephrops norvegicus. Adv. Mar. Biol. 64, 65–106 (2013).

  • 47.

    Lauria, V., Power, A. M., Lordan, C., Weetman, A. & Johnson, M. P. Spatial Transferability of Habitat Suitability Models of Nephrops norvegicus among Fished Areas in the Northeast Atlantic: Sufficiently Stable for Marine Resource Conservation? Plos One 10(2), 1–19 (2015).

  • 48.

    Anon. A Survey of Selected Littoral and Sublittoral Sites in Clew Bay, Co.Mayo. A report prepared by Aqua-Fact International Ltd for Dúchas, Department of Arts Heritage and the Gaeltacht Available at, https://www.npws.ie/sites/default/files/publications/pdf/Aquafact_1999_Clew_Bay.pdf (Accessed: 01/09/2019) (1999).

  • 49.

    Anon. CLAMS Co-ordinated Local Aquaculture Management Systems Group, Clew Bay Co. Mayo (2001) Available at http://www.gesaq.org/p2clew/documents/clams_clew_bay_2001.pdf. (Accessed: 01/09/2019).

  • 50.

    Jacob, U., Mintenbeck, K., Brey, T., Knust, R. & Beyer, K. Stable isotope food web studies: a case for standardized sample treatment. MEPS 287, 251–253 (2005).

  • 51.

    Post, D. M. et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

  • 52.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).

  • 53.

    Parnell, A. simmr: A Stable Isotope Mixing Model. R package version 0.3 (2016). Available at, https://CRAN.R-project.org/package=simmr (Accessed: 01/09/2019).

  • 54.

    deVries, M. S., del Rio, C. M., Tunstall, T. S. & Dawson, T. E. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans. PLoS One 10(4), 1–16 (2015).

  • 55.

    Vedral, A. J. Blue crab residency and migration in the Mobile Bay estuary: a stable isotope study investigating connectivity (PhD Thesis). University of Alabama Available at, http://acumen.lib.ua.edu/content/u0015/0000001/0001038/u0015_0000001_0001038.pdf (Accessed: 01/09/2019) (2012).

  • 56.

    McCutchan, J. H., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

  • 57.

    Vanderklift, M. A. & Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–192 (2003).

  • 58.

    Caut, S., Angulo, E. & Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453 (2009).

  • 59.

    Suring, E. & Wing, S. R. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): Consequences for ecological studies. J. Exp. Mar. Biol. Ecol. 370, 56–63 (2009).

  • 60.

    del Rio, C. M. & Carleton, S. A. How fast and how faithful: the dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359 (2012).

    • Article
    • Google Scholar
  • 61.

    Remy, F., Darchambeau, F., Melchior, A. & Lepoint, G. Impact of food type on respiration, fractionation and turnover of carbon and nitrogen stable isotopes in the marine amphipod Gammarus aequicauda (Martynov, 1931). J. Exp. Mar. Biol. Ecol. 486, 358–367 (2017).

  • 62.

    Pearson, J. & Grove, M. Counting sheep: sample size and statistical inference in stable isotope analysis and palaeodietary reconstruction. World Archaeol. 45(3), 373–384 (2013).

    • Article
    • Google Scholar
  • 63.

    Thomas, H. J. The Spawning and Fecundity of the Norway Lobsters (Nephrops norvegicus L.) around the Scottish Coast. J. Cons. perm. int. Explor. Mer. 29, 221–229 (1964).

    • Article
    • Google Scholar
  • 64.

    Thomas, H. J. & Figueiredo, M. J. Seasonal Variations in the Catch Composition of the Norway Lobster, Nephrops norvegicus (L.) around Scotland. J. Cons. perm.int. Explor. Mer. 30, 75–85 (1965).

    • Article
    • Google Scholar
  • 65.

    Farmer, A. S. D. Reproduction in Nephrops norvegicus (Decapoda: Nephropidae). J. Zool. 174, 161–183 (1974).

    • Article
    • Google Scholar
  • 66.

    Masson, M. E. J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods 43, 679–690 (2011).

  • 67.

    Vander Zanden, M. J. & Fetzer, W. W. Global patterns of aquatic food chain length. Oikos 116, 1378–1388 (2007).

    • Article
    • Google Scholar
  • 68.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    A material’s insulating properties can be tuned at will

    Instrument may enable mail-in testing to detect heavy metals in water