in

Dung beetles response to livestock management in three different regional contexts

  • 1.

    Poiani, K. A., Richter, B. D., Anderson, M. G. & Richter, H. E. Biodiversity Conservation at Multiple Scales: Functional Sites, Landscapes, and Networks. BioScience 50, 133 (2000).

    • Article
    • Google Scholar
  • 2.

    Hortal, J., Roura-Pascual, N., Sanders, N. J. & Rahbek, C. Understanding (insect) species distributions across spatial scales. Ecography 33, 51–53 (2010).

    • Article
    • Google Scholar
  • 3.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    • Article
    • Google Scholar
  • 4.

    Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).

    • Article
    • Google Scholar
  • 5.

    Pärtel, M., Zobel, M., Zobel, K., van der Maarel, E. & Partel, M. The Species Pool and Its Relation to Species Richness: Evidence from Estonian Plant Communities. Oikos 75, 111–117 (1996).

    • Article
    • Google Scholar
  • 6.

    Harrison, S. & Cornell, H. Toward a better understanding of the regional causes of local community richness. Ecol. Lett. 11, 969–979 (2008).

  • 7.

    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    • Article
    • Google Scholar
  • 8.

    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    • Article
    • Google Scholar
  • 9.

    Hawkins, B. A. et al. Energy, water and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    • Article
    • Google Scholar
  • 10.

    O’Brien, E. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J. Biogeogr. 25, 379–398 (1998).

    • Article
    • Google Scholar
  • 11.

    Dambros, C. S., Cáceres, N. C., Magnus, L. & Gotelli, N. J. Effects of neutrality, geometric constraints, climate, and habitat quality on species richness and composition of Atlantic Forest small-mammals: Distribution of small-mammal assemblages. Glob. Ecol. Biogeogr. 24, 1084–1093 (2015).

    • Article
    • Google Scholar
  • 12.

    Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).

    • Article
    • Google Scholar
  • 13.

    O’Brien, E. M. Climatic Gradients in Woody Plant Species Richness: Towards an Explanation Based on an Analysis of Southern Africa’s Woody Flora. J. Biogeogr. 20, 181–198 (1993).

    • Article
    • Google Scholar
  • 14.

    Clinebell, R. R., Phillips, O. L., Gentry, A. H., Stark, N. & Zuuring, H. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers. Conserv. 4, 56–90 (1995).

    • Article
    • Google Scholar
  • 15.

    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).

  • 16.

    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

  • 17.

    Edwards, D. P., Gilroy, J. J., Thomas, G. H., Uribe, C. A. M. & Haugaasen, T. Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity. Curr. Biol. 25, 2384–2391 (2015).

  • 18.

    Myers, J. A. & Harms, K. E. Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol. Lett. 12, 1250–1260 (2009).

  • 19.

    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).

    • Google Scholar
  • 20.

    Filloy, J., Zurita, G. A. & Bellocq, M. I. Bird Diversity in Urban Ecosystems: The Role of the Biome and Land Use Along Urbanization Gradients. Ecosystems 22, 213–227 (2018).

    • Article
    • Google Scholar
  • 21.

    Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313 (2019).

    • Article
    • Google Scholar
  • 22.

    Didham, R., Tylianakis, J., Gemmell, N., Rand, T. & Ewers, R. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

  • 23.

    Filloy, J., Zurita, G. A., Corbelli, J. M. & Bellocq, M. I. On the similarity among bird communities: Testing the influence of distance and land use. Acta Oecologica 36, 333–338 (2010).

  • 24.

    Corbelli, J. M. et al. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa. Plos One 10, e0126854, https://doi.org/10.1371/journal.pone.0126854 (2015).

  • 25.

    Zurita, G. A. & Bellocq, M. I. Bird Assemblages in Anthropogenic Habitats: Identifying a Suitability Gradient for Native Species in the Atlantic Forest. Biotropica 44, 412–419 (2012).

    • Article
    • Google Scholar
  • 26.

    Normand, S. et al. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob. Ecol. Biogeogr. 18, 437–449 (2009).

    • Article
    • Google Scholar
  • 27.

    Bartlett, M. K., Scoffoni, C. & Sack, L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis: Drivers of plant drought tolerance. Ecol. Lett. 15, 393–405 (2012).

  • 28.

    Spector, S. Scarabaeine Dung Beetles (coleoptera: Scarabaeidae: Scarabaeinae): An Invertebrate Focal Taxon for Biodiversity Research and Conservation. Coleopt. Bull. 60, 71–83 (2006).

    • Article
    • Google Scholar
  • 29.

    Gardner, T. A., Hernández, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles: Land-use change and tropical forest dung beetles. J. Appl. Ecol. 45, 883–893 (2008).

    • Article
    • Google Scholar
  • 30.

    Barragán, F., Moreno, C. E., Escobar, F., Bueno-Villegas, J. & Halffter, G. The impact of grazing on dung beetle diversity depends on both biogeographical and ecological context. J. Biogeogr. 41, 1991–2002 (2014).

    • Article
    • Google Scholar
  • 31.

    Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).

    • Article
    • Google Scholar
  • 32.

    Alvarado, F., Escobar, F., Williams, D. R., Arroyo-Rodríguez, V. & Escobar-Hernández, F. The role of livestock intensification and landscape structure in maintaining tropical biodiversity. J. Appl. Ecol. 55, 185–194 (2018).

    • Article
    • Google Scholar
  • 33.

    Halffter, G. & Arellano, L. Response of Dung Beetle Diversity to Human-Induced Changes in a Tropical Landscape. Biotropica 34, 144–154 (2002).

    • Article
    • Google Scholar
  • 34.

    Alvarado, F. et al. Forest cover is more important than farmland heterogeneity and livestock intensification for the retention of dung beetle phylogenetic diversity. Ecol. Indic. 93, 524–532 (2018).

    • Article
    • Google Scholar
  • 35.

    Giménez Gómez, V. C., Verdú, J. R., Guerra Alonso, C. B. & Zurita, G. A. Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors? Biodivers. Conserv. 27, 3201–3213 (2018).

    • Article
    • Google Scholar
  • 36.

    Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).

    • Article
    • Google Scholar
  • 37.

    Guerra Alonso, C. B., Zurita, G. A. & Bellocq, M. I. Livestock areas with canopy cover sustain dung beetle diversity in the humid subtropical Chaco forest. Insect Conserv. Divers. 12, 296–308 (2019).

    • Article
    • Google Scholar
  • 38.

    Davis, A. L. V., Scholtz, C. H. & Philips, T. K. Historical biogeography of scarabaeine dung beetles. J. Biogeogr. 29, 1217–1256 (2002).

    • Article
    • Google Scholar
  • 39.

    Davis, A. J., Huijbregts, H. & Krikken, J. The role of local and regional processes in shaping dung beetle communities in tropical forest plantations in Borneo. Glob. Ecol. 9, 281–292 (2000).

    • Article
    • Google Scholar
  • 40.

    Duncan, F. D. & Byrne, M. J. Discontinuous gas exchange in dung beetles: patterns and ecological implications. Oecologia 122, 452–458 (2000).

  • 41.

    Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).

    • Article
    • Google Scholar
  • 42.

    Chown, S. L., Sørensen, J. G. & Terblanche, J. S. Water loss in insects: An environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).

  • 43.

    Chown, S. L. Physiological variation in insects: hierarchical levels and implications. J. Insect Physiol. 47, 649–660 (2001).

  • 44.

    Gering, J. C., Crist, T. O. & Veech, J. A. Additive Partitioning of Species Diversity across Multiple Spatial Scales: Implications for Regional Conservation of Biodiversity. Conserv. Biol. 17, 488–499 (2003).

    • Article
    • Google Scholar
  • 45.

    Lindenmayer, D. B., Franklin, J. F. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).

    • Article
    • Google Scholar
  • 46.

    Cabeza, M. et al. Conservation planning with insects at three different spatial scales. Ecography 33, 54–63 (2010).

    • Article
    • Google Scholar
  • 47.

    Prado, D. E. Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb. J. Bot. 57, 437–461 (2000).

    • Article
    • Google Scholar
  • 48.

    Cabrera, A. Enciclopedia Argentina de Agricultura y Ganaderia. Tomo II, (Acme, 1976).

  • 49.

    Burkart, R., Barbaro, N. O., Sanchez, R. O. & Gomez, A. D. Eco-Regiones de la Argentina. (Presidencia de la Nación Secretaria de Recursos Naturales y Desarrollo Sustentable Administración de Parques Nacionales, 1999).

  • 50.

    Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. 32, 793–810 (2000).

  • 51.

    Brown, A. D. La situación ambiental Argentina 2005. (Fundación Vida Silvestre Argentina, 2006).

  • 52.

    de Siqueira Neves, F. et al. Successional and Seasonal Changes in a Community of Dung Beetles (Coleoptera: Scarabaeinae) in a Brazilian Tropical Dry Forest. Nat. Conserv. 08, 160–164 (2010).

    • Article
    • Google Scholar
  • 53.

    Larsen, T. H., Lopera, A. & Forsyth, A. Extreme Trophic and Habitat Specialization by Peruvian Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt. Bull. 60, 315–324 (2006).

    • Article
    • Google Scholar
  • 54.

    Salomão, R. P. & Iannuzzi, L. Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev. Bras. Entomol. 59, 126–131 (2015).

    • Article
    • Google Scholar
  • 55.

    Vaz-de-Mello, F. Z. A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). (Magnolia Press, 2011).

  • 56.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 57.

    Cruaud, A. et al. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. Sci. Rep. 8, (2018).

  • 58.

    Chao, A., Chiu, C.-H. & Jost, L. Statistical challenges of evaluating diversity patterns across environmental gradients in mega-diverse communities. J. Veg. Sci. 27, 437–438 (2016).

    • Article
    • Google Scholar
  • 59.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    • Article
    • Google Scholar
  • 60.

    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

  • 61.

    Rangel, T. F., Diniz-Filho, J. A. F. & Bini, L. M. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33, 46–50 (2010).

    • Article
    • Google Scholar
  • 62.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol. Evol. 1, 3–14 (2010).

    • Article
    • Google Scholar
  • 63.

    Oksanen, J. et al. vegan: Community Ecology Package. (2017).

  • 64.

    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

  • 65.

    Borcard, D., Gillet, F. & Legendre, P. Numerical ecology with R. (Springer, 2011).

  • 66.

    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    • Article
    • Google Scholar
  • 67.

    Clarke, K. R. & Green, R. H. Statistical design and analysis for a ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46, 213–226 (1988).

  • 68.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).

  • 69.

    Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).

    • Article
    • Google Scholar
  • 70.

    Scheffler, P. Y. Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. J. Trop. Ecol. 21, 9–19 (2005).

    • Article
    • Google Scholar
  • 71.

    Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes: Ecological processes regulated by dung beetles. Insect Conserv. Divers. 4, 115–122 (2011).

    • Article
    • Google Scholar
  • 72.

    Escobar, F., Halffter, G. & Arellano, L. From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography 30, 193–208 (2007).

    • Article
    • Google Scholar
  • 73.

    Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94, 180–189 (2013).

  • 74.

    Silva, P. Gda & Hernández, M. I. M. Local and Regional Effects on Community Structure of Dung Beetles in a Mainland-Island Scenario. Plos One 9, e111883 (2014).

  • 75.

    Filgueiras, B. K. C. et al. Spatial replacement of dung beetles in edge-affected habitats: biotic homogenization or divergence in fragmented tropical forest landscapes? Divers. Distrib. 22, 400–409 (2016).

    • Article
    • Google Scholar
  • 76.

    Damborsky, M. P., Alvarez Bohle, M. C., Ibarra Polesel, M. G., Porcel, E. A. & Fontana, J. L. Spatial and Temporal Variation of Dung Beetle Assemblages in a Fragmented Landscape at Eastern Humid Chaco. Neotrop. Entomol. 44, 30–39 (2015).

  • 77.

    Verdú, J. R. et al. Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biol. Conserv. 140, 308–317 (2007).

    • Article
    • Google Scholar
  • 78.

    Rös, M., Escobar, F. & Halffter, G. How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: a study of biodiversity integrating ecological and biogeographical perspectives: Dung beetle response to a human-modified variegated landscape. Divers. Distrib. 18, 377–389 (2012).

    • Article
    • Google Scholar
  • 79.

    Moctezuma, V., Halffter, G. & Escobar, F. Response of copronecrophagous beetle communities to habitat disturbance in two mountains of the Mexican Transition Zone: influence of historical and ecological factors. J. Insect Conserv. 20, 945–956 (2016).

    • Article
    • Google Scholar
  • 80.

    Liberal, C. N., Farias, Â. M. I., de, Meiado, M. V., Filgueiras, B. K. C. & Iannuzzi, L. How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem. J. Insect Sci. 11, 1–11 (2011).

    • Article
    • Google Scholar
  • 81.

    Milchunas, D. G., Sala, O. G. & Lauenroth, W. K. A generalized model of the effects of grazing by large herbivores on grassland community structure.pdf. Am. Nat. 132, 87–106 (1988).

    • Article
    • Google Scholar
  • 82.

    Quiroga, R. E., Golluscio, R. A., Blanco, L. J. & Fernández, R. J. F. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass. Ecol. Appl. 20, 14 (2010).

    • Article
    • Google Scholar
  • 83.

    Larsen, T. H. Upslope Range Shifts of Andean Dung Beetles in Response to Deforestation: Compounding and Confounding Effects of Microclimatic Change: Dung Beetles Shift Upslope With Land-Use. Biotropica 44, 82–89 (2012).

    • Article
    • Google Scholar
  • 84.

    Allen, A. P. & O’Connor, R. J. Interactive effects of land use and other factors on regional bird distributions. J. Biogeogr. 27, 889–900 (2000).

    • Article
    • Google Scholar
  • 85.

    Duncan, R. P., Cassey, P. & Blackburn, T. M. Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc. R. Soc. B Biol. Sci. 276, 1449–1457 (2009).

    • Article
    • Google Scholar
  • 86.

    Davis, A. L. V., Scholtz, C. H. & Deschodt, C. Multi-scale determinants of dung beetle assemblage structure across abiotic gradients of the Kalahari-Nama Karoo ecotone, South Africa. J. Biogeogr. 35, 1465–1480 (2008).

    • Article
    • Google Scholar
  • 87.

    Liu, Y. et al. Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landsc. Ecol. 29, 529–540 (2014).

    • Article
    • Google Scholar
  • 88.

    Jacobs, C. T., Scholtz, C. H., Escobar, F. & Davis, A. L. V. How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)? J. Insect Conserv. 14, 389–399 (2010).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Deep cuts in greenhouse emissions are tough but doable, experts say

    International E-waste Day aims to boost awareness of recycling electronics