in

Adaptive fitness of Sapindus emarginatus Vahl populations towards future climatic regimes and the limiting factors of its distribution

  • 1.

    Champion, H. G. & Seth, S. K. A Revised Survey of Forest Types of India (Government of India Press New Delhi, 1968).

  • 2.

    Anonymous. Global saponin market by manufacturers, regions, type and application, forecast to 2023, https://www.planetmarketreports.com/reports/global-saponin-market-5797. (2019).

  • 3.

    Anonymous. Saponin export data of India, https://www.exportgenius.in/export-data/india/saponin.php. (2019).

  • 4.

    Anonymous. State of Forest Genetic Resources in India: A Country Report, http://www.fao.org/3/i3825e/i3825e32.pdf (Institute of Forest Genetics and Tree Breeding Coimbatotre, Indian Council of Forestry Research and Education, 2012).

  • 5.

    Murali, K. S., Shankar, U., Shaanker, R. U., Ganeshaiah, K. N. & Bawa, K. S. Extraction of non‐timber forest products of Biligiri Rangan Hills, India. 2. Impact of NFTP extraction on regeneration, population structure, and species composition. Econ. Bot. 50, 252–269 (1996).

    • Article
    • Google Scholar
  • 6.

    Murthy, K., Bhat, P. R., Ravindranath, N. H. & Sukumar, R. Financial valuation of non-timber forest product flows in Uttara Kannada district, Western Ghats, Karnataka. Curr. Sci. 88, 1573–1579 (2005).

    • Google Scholar
  • 7.

    Pereira, I. M. & Groppo, M. Ecological Niche Modeling: Using Satellite Imagery and New Field Data to Support Ecological Theory and its Applicability in the Brazilian Cerrado. J. Ecosyst. Ecography. 2, https://doi.org/10.4172/2157-7625.1000111 (2012).

  • 8.

    Nagaraju, S. K. et al. Do ecological niche model predictions reflect the adaptive landscape of species?: a test using Myristica malabarica Lam., an endemic tree in the Western Ghats, India. PLoS One 8, https://doi.org/10.1371/journal.pone.0082066 (2013).

  • 9.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–35 (2013).

  • 10.

    Hughes, L., Cawsey, E. M. & Westoby, M. Climatic Range Sizes of Eucalyptus Species in Relation to Future Climate Change. Glob. Ecol. Biogeogr. 5(1), 23–29 (1996).

    • Article
    • Google Scholar
  • 11.

    Booth, T. H. Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling. Clim. Change. 145, 259–271 (2017).

  • 12.

    Kremer, A., Potts, B. M., Delzon, S. & Bailey, J. Genetic divergence in forest trees: understanding the consequences of climate change. Funct. Ecol. 28, 22–36 (2014).

    • Article
    • Google Scholar
  • 13.

    Fischer, M., Hock, M. & Paschke, M. Low genetic variation reduces cross-compatibility and offspring fitness in populations of a narrow endemic plant with a self-incompatibility system. Conserv. Genet. 4, 325–336 (2003).

  • 14.

    Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64, 1202–1217 (2010).

    • PubMed
    • Google Scholar
  • 15.

    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    • Article
    • Google Scholar
  • 16.

    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. USA 101(42), 15261–15264 (2004).

  • 17.

    West, S. A. & Gardner, A. Adaptation and Inclusive Fitness. Curr. Biol. 23, 577–584 (2013).

  • 18.

    Thode, V. A. et al. Genetic diversity and ecological niche modelling of the restricted Recordia reitzii (Verbenaceae) from southern Brazilian Atlantic forest. Bot. J. Linn. Soc. 176, 332–348 (2014).

    • Article
    • Google Scholar
  • 19.

    Vos, P. et al. AFLP- a new technique for DNA fingerprinting. Nucleic. Acids. Res. 23, 4407–4414 (1995).

  • 20.

    Lerceteau, E. & Szmidt, A. E. Properties of AFLP markers in inheritance and genetic diversity studies of Pinus sylvestris L. Heredity 82, 252–260 (1999).

  • 21.

    Meudt, H. M. & Clarke, A. C. Almost forgotten or latest practice? AFLP applications, analyses, and advances. Trends. Plant. Sci. 12(3), 106–117 (2007).

  • 22.

    Mahar, K. S., Rana, T. S., Ranade, S. A. & Meena, B. Genetic variability and population structure in Sapindus emarginatus Vahl from India. Gene 485, 32–39 (2011).

  • 23.

    Holsinger, K. E., Lewis, P. O. & Dey, D. K. A Bayesian approach to inferring population structure from dominant markers. Mol. Ecol. 11, 1157–1164 (2002).

  • 24.

    Holsinger, K. E. & Lewis, P. O. Hickory: A package for analysis of population genetic data, version 1.1. Computer program and documentation, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA (2007)

  • 25.

    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Vanderlinde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Series B Stat. Methodol. 64, 583–689 (2002).

  • 26.

    Bonin, A., Ehrich, D. & Manel, S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and economists. Mol. Ecol. 16, 3737–3758 (2007).

  • 27.

    Sun, C. et al. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Crops. Prod. 118, 1–10 (2018).

  • 28.

    Wang, T., Wang, Z., Xia, F. & Su, Y. Local adaptation to temperature and precipitation in naturally fragmented populations of Cephalotaxus oliveri, an endangered conifer endemic to China. Sci. Rep. 6, 25–31 (2016).

  • 29.

    Vaishnav, V. & Ansari, S. A. Genetic differentiation and adaptation in teak (Tectona grandis L.f.) metapopulations. Plant Mol. Biol. Report. https://doi.org/10.1007/s11105-018-1101-3 (2018).

  • 30.

    Wang, T., Chen, G., Zan, Q., Wang, C. & Su, Y. J. AFLP genome scan to detect genetic structure and candidate loci under selection for local adaptation of the invasive weed Mikania micrantha. PLoS One. 7, e41310 (2012).

  • 31.

    Krauss, S. L., Sinclair, E. A., Bussell, J. D. & Hobbs, R. J. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol. Evol. 321, 38–49 (2013).

    • Google Scholar
  • 32.

    Leempoel, K., Parisod, C., Geiser, C. & Joost, S. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata. Ecol. Evol. 8, 1794–1806 (2018).

  • 33.

    Kim, S. Y. et al. Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinformatics 12, 231 (2011).

  • 34.

    Revadekar, J. V., Kothawale, D. R., Patwardhan, S. K., Pant, G. B. & Rupa, K. K. About the observed and future changes in temperature extremes over India. Natural Hazards 60, 1133–1155 (2012).

    • Article
    • Google Scholar
  • 35.

    Reddi, C. S., Reddi, E. U. B., Reddi, N. S. & Reddi, P. S. Reproductive ecology of Sapindus emarginatus Vahl (Sapindaceae). Proc. Ind. Nat. Sci. Acad. 49B(1), 57–72 (1983).

    • MATH
    • Google Scholar
  • 36.

    Rao, A. S. Preliminary studies on the seasonal occurrence of insect pests a soap nut (Sapindus sp). Ind. Forester. 118(6), 432–437 (1992).

    • ADS
    • Google Scholar
  • 37.

    Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).

    • Article
    • Google Scholar
  • 38.

    Severns, P. M., Liston, A. & Wilson, M. V. Habitat fragmentation, genetic diversity, and inbreeding depression in a threatened grassland legume: is genetic rescue necessary? Conserv. Genet. 12, 881–893 (2011).

    • Article
    • Google Scholar
  • 39.

    Saccheri, I. et al. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494 (1998).

  • 40.

    Walisch, T. J., Matthies, D., Hermant, S. & Colling, G. Genetic structure of Saxifraga rosacea subsp. sponhemica, a rare endemic rock plant of Central Europe. Plant. Syst. Evol. 301, 251–263 (2015).

    • Article
    • Google Scholar
  • 41.

    Charlesworth, B. & Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 74, 329–340 (1999).

  • 42.

    Taylor, H. R. et al. Cryptic inbreeding depression in a growing population of a long-lived species. Mol. Ecol. 26, 799–813 (2017).

  • 43.

    Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G. & Ravindranath, N. H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 103(7), 791–802 (2012).

    • Google Scholar
  • 44.

    Song, X. & Zeng, X. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models. Ecol. Evol. 7, 997–1008 (2017).

  • 45.

    Gao, Y., Gao, X. & Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change-From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 3, 272–278 (2017).

    • Article
    • Google Scholar
  • 46.

    Troup, R. S. The Silviculture of Indian Trees: Volume I. 239–240 (Oxford University Press 1921).

  • 47.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 48.

    Kriticos, D. J. et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3(1), 53–64 (2012).

    • Article
    • Google Scholar
  • 49.

    Shabani, F., Kumar, L. & Ahmadi, M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol. Evol. 6(16), 5973–5986 (2016).

  • 50.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).

    • Article
    • Google Scholar
  • 51.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    • Article
    • Google Scholar
  • 52.

    Phillips, S. J., Dudik, M. & Schapire, R. E. [Internet] Maxent software for modeling species niche and distribution (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/.

  • 53.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol. 62, 2868–2883 (2008).

    • Article
    • Google Scholar
  • 54.

    Warren, D. L. & Seifert, N. Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecol. Application. 21(2), 335–342 (2011).

    • Article
    • Google Scholar
  • 55.

    Tripathi, P. K., Jena, S. N., Rana, T. S. & Sathyanarayana, N. High levels of gene flow constraints population structure in Mucuna pruriens L. (DC.) of northeast India. Plant. Gene. 15, 6–14 (2018).

    • Article
    • Google Scholar
  • 56.

    Liu, K. & Muse, S. V. Powermarker: Integrated analysis environment for genetic marker data. Bioinformatics. 21(9), 2128–2129 (2005).

  • 57.

    Zhivotovsky, L. A. Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8, 907–913 (1999).

  • 58.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28, 2537–2539 (2012).

  • 59.

    Perrier, X. & Jacquemoud-Collet, J. P. DARwin software: Dissimilarity Analysis and Representation for Windows http://darwin.cirad.fr/darwin (2006).

  • 60.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. 155, 945–959 (2000).

    • CAS
    • Google Scholar
  • 61.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2621 (2005).

  • 62.

    McDermott, J. M. & McDonald, B. A. Gene flow in plant pathosystems. Annu. Rev. Phytopathol. 31, 353–373 (1993).

    • Article
    • Google Scholar
  • 63.

    Foll, M. & Gaggiotti, O. E. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genet. 180(2), 977–993 (2008).

    • Article
    • Google Scholar
  • 64.

    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 23(19), 2633–2635 (2007).

  • 65.

    Pritchard, J. K., Stephens, M., Rosenberg, N. A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181 (2000).

  • 66.

    Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events