in

Introduced non-native mangroves express better growth performance than co-occurring native mangroves

  • 1.

    Twilley, R. R. & Day, J. W. Mangrove wetlands. In Estuarine Ecology 165–202, https://doi.org/10.1002/9781118412787.ch7 (John Wiley & Sons, Inc., 2013).

  • 2.

    Duke, N. C. et al. A world without mangroves? Science 317, 41b–42b (2007).

    • Article
    • Google Scholar
  • 3.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 20, 154–159 (2011).

    • Article
    • Google Scholar
  • 4.

    Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (2010).

  • 5.

    Bellard, C. et al. Will climate change promote future invasions? Global Change Biol. 19, 3740–3748 (2013).

  • 6.

    Tomiolo, S. & Ward, D. Species migrations and range shifts: A synthesis of causes and consequences. Perspect. Plant Ecol. 33, 62–77 (2018).

    • Article
    • Google Scholar
  • 7.

    Bradley, B. A., Blumenthal, D. M., Wilcove, D. S. & Ziska, L. H. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 25, 310–318 (2010).

    • Article
    • Google Scholar
  • 8.

    Sorte, C. J. B. et al. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol. Lett. 16, 261–270 (2013).

    • Article
    • Google Scholar
  • 9.

    Liu, Y. et al. Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biol. 23, 3363–3370 (2017).

  • 10.

    Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    • Article
    • Google Scholar
  • 11.

    Biswas, S. R. et al. Plant invasion in mangrove forests worldwide. Forest Ecol. Manag. 429, 480–492 (2018).

    • Article
    • Google Scholar
  • 12.

    Fourqurean, J. W. et al. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida. Biol. Invasions 12, 2509–2522 (2010).

    • Article
    • Google Scholar
  • 13.

    Chen, L., Wang, W., Zhang, Y. & Lin, G. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2, 45–54 (2009).

    • Article
    • Google Scholar
  • 14.

    Moran, R. Noteworthy collections: Avicennia marina var. resinifera. Madroño 27, 143 (1980).

    • Google Scholar
  • 15.

    Sauer, J. D. Plant Migration. The Dynamics of Geographic Patterning in Seed Plant Species. (University of California Press, 1988).

  • 16.

    Chen, L. Invasive plants in coastal wetlands: Patterns and mechanisms. In Wetlands: Ecosystem Services, Restoration and Wise Use, Ecological Studies, https://doi.org/10.1007/978-3-030-14861-4_5 (2019).

  • 17.

    Rejmánek, M. & Richardson, D. M. Trees and shrubs as invasive alien species – 2013 update of the global database. Divers. Distrib. 19, 1093–1094 (2013).

    • Article
    • Google Scholar
  • 18.

    Allen, J. A. Mangroves as alien species: The case of Hawaii. Global Ecol. Biogeogr. 7, 61–71 (1998).

    • Article
    • Google Scholar
  • 19.

    Walsh, G. E. An ecological study of a Hawaiian mangrove swamp. Estuaries (ed. byLauff, G. H.), pp. 420–431. American Association for the Advancement of Science Publication No. 83, Washington, D.C (1967).

  • 20.

    MacDougall, A. S., Gilbert, B. & Levine, J. M. Plant invasions and the niche. J. Ecol. 97, 609–615 (2009).

    • Article
    • Google Scholar
  • 21.

    Hulme, P. E. & Bernard-Verdier, M. Comparing traits of native and alien plants: Can we do better? Funct. Ecol. 32, 117–125 (2018).

    • Article
    • Google Scholar
  • 22.

    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Ann. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    • Article
    • Google Scholar
  • 23.

    Umaña, M. N., Zhang, C., Cao, M., Lin, L. & Swenson, N. G. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecol. Lett. 18, 1329–1337 (2015).

  • 24.

    Steele, O. C., Ewel, K. C. & Goldstein, G. The importance of propagule predation in a forest of nonindigenous mangrove trees. Wetlands 19, 705–708 (1999).

    • Article
    • Google Scholar
  • 25.

    Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. T. Roy. Soc. B. 365, 2025–2034 (2010).

    • Article
    • Google Scholar
  • 26.

    Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol. 83, 887–889 (1995).

    • Article
    • Google Scholar
  • 27.

    Erskine-Ogden, J., Grotkopp, E. & Rejmánek, M. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change. Am. J. Bot. 103, 613–624 (2016).

  • 28.

    Peperkorn, R., Werner, C. & Beyschlag, W. Phenotypic plasticity of an invasive acacia versus two native Mediterranean species. Funct. Plant Biol. 32, 933–944 (2005).

    • Article
    • Google Scholar
  • 29.

    Lamarque, L. J., Delzon, S. & Lortie, C. J. Tree invasions: A comparative test of the dominant hypotheses and functional traits. Biol. Invasions 13, 1969–1989 (2011).

    • Article
    • Google Scholar
  • 30.

    Kawaletz, H. et al. Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. J. Plant Ecol. 6, 305–315 (2013).

    • Article
    • Google Scholar
  • 31.

    Simpson, L. T., Osborne, T. Z. & Feller, I. C. Establishment and biomass allocation of black and red mangroves: Response to propagule flotation duration and seedling light availability. J. Coast. Res. 335, 1126–1134 (2017).

    • Article
    • Google Scholar
  • 32.

    Lovelock, C. E., Krauss, K. W., Osland, M. J., Reef, R. & Ball, M. C. The physiology of mangrove trees with changing climate. In Tropical Tree Physiology 149–179, https://doi.org/10.1007/978-3-319-27422-5_7 (2016).

  • 33.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–85 (2006).

  • 34.

    Nock, C. A., Vogt, R. J. & Beisner, B. E. Functional Traits. In Encyclopedia of Life Sciences 1–8, https://doi.org/10.1002/9780470015902.a0026282 (John Wiley & Sons, Ltd, 2016).

  • 35.

    Violle, C. et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).

  • 36.

    Funk, J. L. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

  • 37.

    He, D., Chen, Y., Zhao, K., Cornelissen, J. H. C. & Chu, C. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest. Ann. Bot. 121, 1173–1182 (2018).

  • 38.

    Soliveres, S. et al. Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Pers. Plant Ecol. Evol. Syst. 16, 164–173 (2014).

    • Article
    • Google Scholar
  • 39.

    Carboni, M., Calderon-Sanou, I., Pollock, L., Violle, C. & Thuiller, W. Functional traits modulate the response of alien plants along abiotic and biotic gradients. Global Ecol. Biogeogr. 27, 1173–1185 (2018).

    • Article
    • Google Scholar
  • 40.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  • 41.

    Funk, J. L. Differences in plasticity between invasive and native plants from a low resource environment. J. Ecol. 96, 1162–1173 (2008).

    • Article
    • Google Scholar
  • 42.

    Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).

    • Article
    • Google Scholar
  • 43.

    Davidson, A. M., Jennions, M. & Nicotra, A. B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 14, 419–31 (2011).

    • Article
    • Google Scholar
  • 44.

    López-Medellín, X. & Ezcurra, E. The productivity of mangroves in northwestern Mexico: A meta-analysis of current data. J. Coast. Conserv. 16, 399–403 (2012).

    • Article
    • Google Scholar
  • 45.

    Brander, M. L. et al. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 1, 62–69 (2012).

    • Article
    • Google Scholar
  • 46.

    Davidson, I. C., Cott, G. M., Devaney, J. L. & Simkanin, C. Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis. Global Change Biol. 24, 5218–5230 (2018).

  • 47.

    Ball, M. C., Cochrane, M. J. & Rawson, H. M. Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell. Environ. 20, 1158–1166 (1997).

    • Article
    • Google Scholar
  • 48.

    Naidoo, G. Effects of waterlogging and salinity on plant-water relations and on the accumulation of solutes in three mangrove species. Aquat. Bot. 22, 133–143 (1985).

    • Article
    • Google Scholar
  • 49.

    Feller, I. C. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monogr. 65, 477–505 (1995).

    • Article
    • Google Scholar
  • 50.

    Krauss, K. W., Young, P. J., Chambers, J. L., Doyle, T. W. & Twilley, R. R. Sap flow characteristics of neotropical mangroves in flooded and drained soils. Tree Physiol. 27, 775–783 (2007).

    • Article
    • Google Scholar
  • 51.

    Ye, Y., Tam, N. F. Y., Wong, Y. S. & Lu, C. Y. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany 49, 209–221 (2003).

    • Article
    • Google Scholar
  • 52.

    McKee, K. L. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol. 16, 883–889 (1996).

    • Article
    • Google Scholar
  • 53.

    Zeng, X. et al. Seedling emergence and dispersal pattern of the introduced Sonneratia caseolaris in Shenzhen Bay, China. Biodivers. Sci. 16, 236–244 (2008).

    • Article
    • Google Scholar
  • 54.

    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    • Article
    • Google Scholar
  • 55.

    Mihulka, S., Pysek, P., Martinkova, J. & Jarosik, V. Invasiveness of Oenothera congeners alien to Europe: Jack of all trades, master of invasion? Pers. Plant Ecol. Evol. Syst. 8, 83–96 (2006).

    • Article
    • Google Scholar
  • 56.

    Grotkopp, E. & Rejmánek, M. High seedling relative growth rate and specific leaf area are traits of invasive species: Phylogenetically independent contrasts of woody angiosperms. Am. J. Bot. 94, 526–532 (2007).

    • Article
    • Google Scholar
  • 57.

    Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons. New Phyt. 176, 635–643 (2007).

  • 58.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    • Article
    • Google Scholar
  • 59.

    Valladares, F., Wright, S., Lasso, E. & Kitajima, K. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81, 1925–1936 (2000).

    • Article
    • Google Scholar
  • 60.

    Valladares, F., Sanchez-Gomez, D. & Zavala, M. A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94, 1103–1116 (2006).

    • Article
    • Google Scholar
  • 61.

    Gratani, L., Catoni, R., Pirone, G., Frattaroli, A. R. & Varone, L. Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. Photosynthetica 50, 15–23 (2012).

    • Article
    • Google Scholar
  • 62.

    Sheue, C.-R., Liu, H.-Y. & Yong, J. W. H. Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon 52, 287–294 (2003).

    • Article
    • Google Scholar
  • 63.

    Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).

    • Article
    • Google Scholar
  • 64.

    Ren, H. et al. Sonneratia apetala Buch.Ham in the mangrove ecosystems of China: An invasive species or restoration species? Ecol. Eng. 35, 1243–1248 (2009).

    • Article
    • Google Scholar
  • 65.

    Lu, W. et al. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9, e91238 (2014).

  • 66.

    Osland, M. J., Enwright, N. & Stagg, C. L. Freshwater availability and coastal wetland foundation species: Ecological transitions along a rainfall gradient. Ecology 95, 2789–2802 (2014).

    • Article
    • Google Scholar
  • 67.

    Osland, M. J. et al. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuarine, Coastal and Shelf Science 214, 120–140 (2018).

  • 68.

    Félix-Pico, E. F., Holguín-Quiñones, O. E., Hernández-Herrera, A. & Flores-Verdugo, F. Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas 32, 53–63 (2006).

    • Article
    • Google Scholar
  • 69.

    Chen, L. et al. Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar. Coast. Shelf S. 79, 644–652 (2008).

  • 70.

    Zhong, C. R., Shi-Chuan, L. I., Yang, Y. C., Zhang, Y. & Lin, Z. W. Analysis of the introduction effect of a mangrove species Laguncularia racemosa. J. Fujian Forest Sci. Tech. 38, 96–99 (2011).

    • Google Scholar
  • 71.

    Gu, X. et al. Predicting the invasive potential of a non-native mangrove reforested plant (Laguncularia racemosa) in China. Ecol. Eng. 139, 105591 (2019).

    • Article
    • Google Scholar
  • 72.

    Wang, X., Zhou, L. & Lu, C. Do environmental factors affect the male frequency of exotic mangrove species Laguncularia racemosa (Combretaceae) along the southeast coast of China? Aquat. Ecol. 52, 235–244 (2018).

  • 73.

    Ren, H. et al. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China. Ecol. Res. 23, 401–407 (2008).

    • Article
    • Google Scholar
  • 74.

    Li, F. L. et al. Are photosynthetic characteristics and energetic cost important invasive traits for alien Sonneratia species in south China. PLoS ONE 11, 1–19 (2016).

    • Google Scholar
  • 75.

    Morgan, E. C. & Overholt, W. A. Potential allelopathic effects of Brazilian pepper (Schinus terebinthifolius Raddi, Anacardiaceae) aqueous extract on germination and growth of selected Florida native plants. J. Torrey Bot. Soc. 132, 11–15 (2005).

    • Article
    • Google Scholar
  • 76.

    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove Ecosystems. In Advances in Marine Biology 81–251, https://doi.org/10.1016/S0065-2881(01)40003-4 (Elsevier, 2001).

  • 77.

    Chen, L., Peng, S., Chen, B., Li, J. & Pang, J. Effects of Aqueous extracts of 5 mangrove spp. on cabbage germination and hypocotyl growth of Kandelia candel. Allelopathy J. 23, 469–476 (2009).

    • Google Scholar
  • 78.

    Zhang, Y. et al. Allelopathic effects of leachates from two alien mangrove species, Sonneratia apetala and Laguncularia racemosa on seed germination, seedling growth and antioxidative activity of native mangrove species Sonneratia caseolaris. Allelopathy J. 44, 119–130 (2018).

    • ADS
    • Google Scholar
  • 79.

    Stuart, S. A., Choat, B., Martin, K. C., Holbrook, N. M. & Ball, M. C. The role of freezing in setting the latitudinal limits of mangrove forests. New Phyt. 173, 576–583 (2007).

  • 80.

    Woodward, F. I. Climate and plant distribution. Cambridge University Press. (1987).

  • 81.

    Madrid, E. N., Armitage, A. R. & Lopez-Portillo, J. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico. Front. Plant Sci. 5, 1–9 (2014).

    • Article
    • Google Scholar
  • 82.

    Goldstein, G., Santiago, L. S. Tropical Tree Physiology. (Springer International Publishing, 2016).

  • 83.

    Osland, M. J. et al. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98, 125–137 (2017).

    • Article
    • Google Scholar
  • 84.

    Cavanaugh, K. C. et al. Sensitivity of mangrove range limits to climate variability. Global Ecol. Biogeogr. 27, 925–935 (2018).

    • Article
    • Google Scholar
  • 85.

    Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf S. 215, 241–249 (2018).

  • 86.

    Huebner, C. D., Regula, A. E. & McGill, D. W. Germination, survival, and early growth of three invasive plants in response to five forest management regimes common to US northeastern deciduous forests. Forest Ecol. Manag. 425, 100–118 (2018).

    • Article
    • Google Scholar
  • 87.

    Huston, M. A. Management strategies for plant invasions: Manipulating productivity, disturbance, and competition. Divers. Distrib. 10, 167–178 (2004).

    • Article
    • Google Scholar
  • 88.

    Dangremond, E. M., Feller, I. C. & Sousa, W. P. Environmental tolerances of rare and common mangroves along light and salinity gradients. Oecologia 179, 1187–1198 (2015).

  • 89.

    Peng, Y. et al. Early growth adaptability of four mangrove species under the canopy of an introduced mangrove plantation: Implications for restoration. Forest Ecol. Manag. 373, 179–188 (2016).

    • Article
    • Google Scholar
  • 90.

    Pyšek, P. et al. Contrasting patterns of naturalized plant richness in the Americas: Numbers are higher in the North but expected to rise sharply in the South. Global Ecol. Biogeogr. 28, 779–783 (2019).

    • Article
    • Google Scholar
  • 91.

    Chen, L. Invasive Plants in Coastal Wetlands: Patterns and Mechanisms. In Wetlands: Ecosystem Services, Restoration and Wise Use, Ecological Studies, S An, JTA., https://doi.org/10.1007/978-3-030-14861-4_5 (2019).

  • 92.

    Biswas, S. R., Choudhury, J. K., Nishat, A. & Rahman, M. M. Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? Forest Ecol. Manag. 245, 1–9 (2007).

    • Article
    • Google Scholar
  • 93.

    Saenger, P., Bellan, M. F. The mangrove vegetation of the Atlantic coast of Africa. (Université de Toulouse Press, 1995).

  • 94.

    Duke, N. C. Nypa in the mangroves of Central America: Introduced or relict? Principes 35, 127–132 (1991).

    • Google Scholar
  • 95.

    Sheppard, C., Price, A. & Roberts, C. Marine ecology of the Arabian region: Patterns and processes in extreme tropical environments. (Academic Press, 1992).

  • 96.

    Langer, M. R. & Lipps, J. H. Assembly and persistence of foraminifera in introduced mangroves on Moorea, French Polynesia. Micropaleontology 52, 343–355 (2007).

    • Article
    • Google Scholar
  • 97.

    Swearingen, J., Bargeron, C. Invasive Plant Atlas of the United States. (University of Georgia Center for Invasive Species and Ecosystem Health, 2016).

  • 98.

    Meyer, J. Y. Invasive plants in the Pacific Islands. In The Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy (ed. Sherley, G.) (SPREP, 2000).

  • 99.

    Elfers, S. C. Element stewardship abstract for Casuarina equisetifolia. (The Nature Conservancy, 1988).

  • 100.

    Liu, X., Lu, Y., Xue, Y. & Zhang, X. Testing the importance of native plants in facilitation the restoration of coastal plant communities dominated by exotics. Forest Ecol. Manag. 322, 19–26 (2014).

    • Article
    • Google Scholar
  • 101.

    Henderson, L. & Wilson, J. R. U. Changes in the composition and distribution of alien plants in South Africa: An update from the Southern African Plant Invaders Atlas. Bothalia 47, a2142 (2017).

    • Article
    • Google Scholar
  • 102.

    Fuller, D. O. Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. Int. J. Remote Sens. 26, 1057–1063 (2005).

  • 103.

    Pratt, P. D., Rayamajhi, M. B., Van, T. K., Center, T. D. & Tipping, P. W. Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quinquenervia. Ecol. Entomol. 30, 316–326 (2005).

    • Article
    • Google Scholar
  • 104.

    Cuda, J. P., Ferriter, A. P., Manrique, V. M. J. Brazilian Peppertree Task Force Chair. Interagency Brazilian Peppertree (Schinus terebinthifolius) Management Plan for Florida. (Recommendations from the Brazilian Peppertree Task Force Florida Exotic Pest Plant Council, 2006).

  • 105.

    Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29, 360–369 (2015).

  • 106.

    Robakowski, P., Bielinis, E. & Sendall, K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. J. Plant Res. 131, 505–523 (2018).

  • 107.

    Grotkopp, E., Rejmanek, M. & Rost, T. L. Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. Am. Nat. 159, 396–419 (2002).

  • 108.

    Baruch, Z. & Goldstein, G. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121, 183–192 (1999).

  • 109.

    Pattison, R. R., Goldstein, G. & Ares, A. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117, 449–459 (1998).

  • 110.

    Yuan, Y. et al. Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios. Plant Soil 372, 389–400 (2013).

  • 111.

    Luo, Y. et al. Increased nitrogen deposition alleviated the competitive effects of the introduced invasive plant Robinia pseudoacacia on the native tree Quercus acutissima. Plant Soil 385, 63–75 (2014).

  • 112.

    Kloeppel, B. D. & Abrams, M. D. Ecophysiological attributes of the native Acer saccharum and the exotic Acer platanoides in urban oak forests in Pennsylvania, USA. Tree Physiol. 15, 739–746 (1995).

  • 113.

    Yamashita, N., Koike, N. & Ishida, A. Leaf ontogenetic dependence of light acclimation in invasive and native subtropical trees of different successional status. Plant Cell. Environ. 25, 1341–1356 (2002).

    • Article
    • Google Scholar
  • 114.

    Schumacher, E., Kueffer, C., Edwards, P. J. & Dietz, H. Influence of light and nutrient conditions on seedling growth of native and invasive trees in the Seychelles. Biol. Invasions 11, 1941–1954 (2009).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Rolling away: a novel context-dependent escape behaviour discovered in ants

    A model study of terraced riverbeds as novel ecosystems