in

Community rescue in experimental phytoplankton communities facing severe herbicide pollution

  • 1.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

  • 2.

    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

  • 3.

    Thomas, C. D. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30, 448–455 (2015).

    • PubMed
    • Google Scholar
  • 4.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 5.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

  • 6.

    Chevin, L.-M., Gallet, R., Gomulkiewicz, R., Holt, R. D. & Fellous, S. Phenotypic plasticity in evolutionary rescue experiments. Phil. Trans. R. Soc. Lond. B 368, 20120089 (2013).

    • Google Scholar
  • 7.

    Kovach-Orr, C. & Fussmann, G. F. Evolutionary and plastic rescue in multitrophic model communities. Phil. Trans. R. Soc. B 368, 20120084 (2013).

    • PubMed
    • Google Scholar
  • 8.

    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).

    • Google Scholar
  • 9.

    Alexander, H. K., Martin, G., Martin, O. Y. & Bonhoeffer, S. Evolutionary rescue: linking theory for conservation and medicine. Evol. Appl. 7, 1161–1179 (2014).

  • 10.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    • PubMed
    • Google Scholar
  • 11.

    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction? Evolution 49, 201–207 (1995).

    • PubMed
    • Google Scholar
  • 12.

    Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009).

    • PubMed
    • Google Scholar
  • 13.

    Bell, G. & Gonzalez, A. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332, 1327–1330 (2011).

  • 14.

    Ramsayer, J., Kaltz, O. & Hochberg, M. E. Evolutionary rescue in populations of Pseudomonas fluorescens across an antibiotic gradient. Evol. Appl. 6, 608–616 (2013).

  • 15.

    Samani, P. & Bell, G. Adaptation of experimental yeast populations to stressful conditions in relation to population size. J. Evol. Biol. 23, 791–796 (2010).

  • 16.

    Gonzalez, A. & Bell, G. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Phil. Trans. R. Soc. Lond. B 368, 20120079 (2013).

    • Google Scholar
  • 17.

    Lachapelle, J. & Bell, G. Evolutionary rescue of sexual and asexual populations in a deteriorating environment. Evolution 66, 3508–3518 (2012).

    • PubMed
    • Google Scholar
  • 18.

    Low-Décarie, E. et al. Community rescue in experimental metacommunities. Proc. Natl Acad. Sci. USA 112, 14307–14312 (2015).

    • PubMed
    • Google Scholar
  • 19.

    Bell, G. et al. Trophic structure modulates community rescue following acidification. Proc. R. Soc. B 286, 20190856 (2019).

  • 20.

    Fussmann, G. F. & Gonzalez, A. Evolutionary rescue can maintain an oscillating community undergoing environmental change. Interface Focus 3, 20130036 (2013).

  • 21.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    • PubMed
    • Google Scholar
  • 22.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    • Google Scholar
  • 23.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

  • 24.

    Tsui, M. T. K. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197 (2003).

  • 25.

    Saxton, M. A., Morrow, E. A., Bourbonniere, R. A. & Wilhelm, S. W. Glyphosate influence on phytoplankton community structure in Lake Erie. J. Gt. Lakes Res. 37, 683–690 (2011).

    • CAS
    • Google Scholar
  • 26.

    Christy, S. L., Karlander, E. P. & Parochetti, J. V. Effects of glyphosate on the growth rate of Chlorella. Weed Sci. 29, 5–7 (1981).

    • CAS
    • Google Scholar
  • 27.

    Wong, P. K. Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll—a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41, 177–182 (2000).

  • 28.

    Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).

  • 29.

    Duke, S. O. & Powles, S. B. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325 (2008).

  • 30.

    Hébert, M.-P., Fugère, V. & Gonzalez, A. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Front. Ecol. Environ. 17, 48–56 (2019).

  • 31.

    Gilbert, N. A hard look at GM crops. Nature 497, 24–26 (2013).

    • Google Scholar
  • 32.

    Hicks, H. L. et al. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2, 529–536 (2018).

    • PubMed
    • Google Scholar
  • 33.

    Green, J. M. The rise and future of glyphosate and glyphosate-resistant crops. Pest Manag. Sci. 74, 1035–1039 (2018).

  • 34.

    Kreiner, J. M., Stinchcombe, J. R. & Wright, S. I. Population genomics of herbicide resistance: adaptation via evolutionary rescue. Annu. Rev. Plant Biol. 69, 611–635 (2018).

  • 35.

    Van Bruggen, A. H. C. et al. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616–617, 255–268 (2018).

    • PubMed
    • Google Scholar
  • 36.

    Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl Acad. Sci. USA 115, 10305–10310 (2018).

  • 37.

    Annett, R., Habibi, H. R. & Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 34, 458–479 (2014).

  • 38.

    Helander, M., Saloniemi, I. & Saikkonen, K. Glyphosate in northern ecosystems. Trends Plant Sci. 17, 569–574 (2012).

  • 39.

    Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).

    • Google Scholar
  • 40.

    Giroux, I. Présence de pesticides dans l’eau au Québec: Portrait et tendances dans les zones de maïs et de soya – 2011 à 2014 (MELCC, 2015); https://go.nature.com/2SfqYGc

  • 41.

    Dill, G. M. et al. in Glyphosate Resistance in Crops and Weeds: History, Development, and Management (ed. Nandula, V.) 1–33 (Wiley, 2010).

  • 42.

    Hove-Jensen, B., Zechel, D. L. & Jochimsen, B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev. 78, 176–197 (2014).

  • 43.

    Gross, K. et al. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).

    • PubMed
    • Google Scholar
  • 44.

    Tlili, A. et al. Pollution‐induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshw. Biol. 61, 2141–2151 (2016).

    • CAS
    • Google Scholar
  • 45.

    Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under Arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).

    • Google Scholar
  • 46.

    Bérard, A. & Benninghoff, C. Pollution-induced community tolerance (PICT) and seasonal variations in the sensitivity of phytoplankton to atrazine in nanocosms. Chemosphere 45, 427–437 (2001).

    • PubMed
    • Google Scholar
  • 47.

    Gustavson, K. et al. Pollution-induced community tolerance (PICT) in coastal phytoplankton communities exposure to copper. Hydrobiologia 416, 125–138 (1999).

    • Google Scholar
  • 48.

    Millward, R. N. & Grant, A. Assessing the impact of copper on nematode communities from a chronically metal-enriched estuary using pollution-induced community tolerance. Mar. Pollut. Bull. 30, 701–706 (1995).

    • CAS
    • Google Scholar
  • 49.

    Hua, J., Morehouse, N. I. & Relyea, R. Pesticide tolerance in amphibians: induced tolerance in susceptible populations, constitutive tolerance in tolerant populations. Evol. Appl. 6, 1028–1040 (2013).

  • 50.

    Pizarro, H. et al. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environ. Sci. Pollut. Res. 23, 5143–5153 (2016).

    • CAS
    • Google Scholar
  • 51.

    Thibodeau, G., Walsh, D. A. & Beisner, B. E. Rapid eco-evolutionary responses in perturbed phytoplankton communities. Proc. R. Soc. B 282, 20151215 (2015).

    • Google Scholar
  • 52.

    van Benthem, K. J. et al. Disentangling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four frameworks. Methods Ecol. Evol. 8, 75–85 (2017).

    • Google Scholar
  • 53.

    Govaert, L., Pantel, J. H., De Meester, L. & Coulson, T. Eco‐evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).

    • PubMed
    • Google Scholar
  • 54.

    Cuhra, M., Traavik, T. & Bøhn, T. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22, 251–262 (2013).

  • 55.

    Lipok, J., Studnik, H. & Gruyaert, S. The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol. Environ. Saf. 73, 1681–1688 (2010).

  • 56.

    Vera, M. S. et al. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19, 710–721 (2010).

  • 57.

    Austin, A. P., Harris, G. E. & Lucey, W. P. Impact of an organophosphate herbicide (GlyphosateR) on periphyton communities developed in experimental streams. Bull. Environ. Contam. Toxicol. 47, 29–35 (1991).

  • 58.

    Gaupp-Berghausen, M., Hofer, M., Rewald, B. & Zaller, J. G. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci. Rep. 5, 12886 (2015).

  • 59.

    Harris, T. D. & Smith, V. H. Do persistent organic pollutants stimulate cyanobacterial blooms? Inland Waters 6, 124–130 (2016).

    • CAS
    • Google Scholar
  • 60.

    Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892–897 (2015).

    • Google Scholar
  • 61.

    Zhang, C., Jansen, M., De Meester, L. & Stoks, R. Thermal evolution offsets the elevated toxicity of a contaminant under warming: a resurrection study in Daphnia magna. Evol. Appl. 11, 1425–1436 (2018).

  • 62.

    Kelly, M. W., DeBiasse, M. B., Villela, V. A., Roberts, H. L. & Cecola, C. F. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol. Appl. 9, 1147–1155 (2016).

  • 63.

    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. Lond. B 368, 20120080 (2013).

    • Google Scholar
  • 64.

    Schiebelhut, L. M., Puritz, J. B. & Dawson, M. N. Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc. Natl Acad. Sci. USA 115, 7069–7074 (2018).

  • 65.

    Whitehead, A., Clark, B. W., Reid, N. M., Hahn, M. E. & Nacci, D. When evolution is the solution to pollution: key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations. Evol. Appl. 10, 762–783 (2017).

  • 66.

    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).

  • 67.

    Epstein, B. et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun. 7, 12684 (2016).

  • 68.

    Canadian water quality guidelines for the protection of aquatic life: Glyphosate. Canadian Environmental Quality Guidelines (Canadian Council of Ministers of the Environment, 2012); http://st-ts.ccme.ca/en/index.html

  • 69.

    Guidelines for Canadian Drinking Water Quality—Summary Table (Health Canada, 2017).

  • 70.

    Pérez, G. L. et al. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecol. Appl. 17, 2310–2322 (2007).

    • PubMed
    • Google Scholar
  • 71.

    Khadra, M., Planas, D., Girard, C. & Amyot, M. Age matters: submersion period shapes community composition of lake biofilms under glyphosate stress. FACETS 3, 934–951 (2018).

    • Google Scholar
  • 72.

    Lund, J. W. G., Kipling, C. & Le Cren, E. D. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).

    • Google Scholar
  • 73.

    Kremer, C. T., Gillette, J. P., Rudstam, L. G., Brettum, P. & Ptacnik, R. A compendium of cell and natural unit biovolumes for >1200 freshwater phytoplankton species. Ecology 95, 2984–2984 (2014).

    • Google Scholar
  • 74.

    Patton, C. J. & Kryskalla, J. R. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory: evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water Water-Resources Investigations Report 2003-4174 (USGS, 2003); http://pubs.er.usgs.gov/publication/wri034174

  • 75.

    Wetzel, R. G. & Likens, G. Limnological Analyses (Springer Science & Business Media, 2000).

  • 76.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 77.

    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  • 78.

    Hothorn, T., Hornik, K. & Zeileis, A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).

    • Google Scholar
  • 79.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    • Google Scholar
  • 80.

    Hallett, L. M. et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).

    • Google Scholar
  • 81.

    Oksanen, J. et al. vegan: Community Ecology Package R package version 2.5-6 (2019); https://CRAN.R-project.org/package=vegan


  • Source: Ecology - nature.com

    Machine learning picks out hidden vibrations from earthquake data

    Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events