in

Improved soil biological health increases corn grain yield in N fertilized systems across the Corn Belt

  • 1.

    Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

  • 2.

    Ladha, J. K. et al. Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).

  • 3.

    Bowles, T. M. et al. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 1, 399–408 (2018).

    • Article
    • Google Scholar
  • 4.

    Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J. & Van Kessel, C. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903–913 (2010).

  • 5.

    Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    • Google Scholar
  • 6.

    Venterea, R. T., Coulter, J. A. & Dolan, M. S. Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitrogen surplus in rainfed corn. J. Environ. Qual. 45, 1186–1195 (2016).

  • 7.

    Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: a meta‐analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).

  • 8.

    Poffenbarger, H. J. et al. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agric. Ecosyst. Environ. 265, 544–555 (2018).

  • 9.

    Yan, M., Pan, G., Lavallee, J. M. & Conant, R. T. Rethinking sources of nitrogen to cereal crops. Glob. Change Biol. (2019).

  • 10.

    Li, Z. et al. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. (2018).

  • 11.

    Jilling, A. et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 139, 103–122 (2018).

  • 12.

    Bowles, T. M., Hollander, A. D., Steenwerth, K. & Jackson, L. E. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape. PloS One 10, e0131888 (2015).

  • 13.

    Doran, J. W. Soil health and global sustainability: translating science into practice. Agric. Ecosyst. Environ. 88, 119–127 (2002).

    • Article
    • Google Scholar
  • 14.

    Kibblewhite, M., Ritz, K. & Swift, M. Soil health in agricultural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 685–701 (2008).

  • 15.

    Arbuckle, J. G. Iowa Farm and Rural Life Poll: 2015 Summary Report, https://store.extension.iastate.edu/FileDownload.ashx?FileID=3510 (2016).

  • 16.

    Idowu, Oj et al. Use of an integrative soil health test for evaluation of soil management impacts. Renew. Agric. Food Syst. 24, 214–224 (2009).

    • Article
    • Google Scholar
  • 17.

    Romig, D. E., Garlynd, M. J., Harris, R. F. & McSweeney, K. How farmers assess soil health and quality. J. Soil Water Conserv. 50, 229–236 (1995).

    • Google Scholar
  • 18.

    Soil Health Institute. Enriching Soil, Enhancing Life: An Action Plan for Soil Health, http://soilhealthinstitute.org/wp-content/uploads/2017/05/Action-Plan-FINAL-for-flipbook-3.pdf (2017).

  • 19.

    IWLA. State and Local Soil Health Strategies: Building Soil Healthy Policy From the Ground Up, https://www.iwla.org/docs/default-source/conservation-docs/agriculture-documents/state-soil-health-policies.pdf?sfvrsn=2 (2019).

  • 20.

    Stuart, D., Denny, R. C. H., Houser, M., Reimer, A. P. & Marquart-Pyatt, S. Farmer selection of sources of information for nitrogen management in the US Midwest: Implications for environmental programs. Land Use Policy 70, 289–297 (2018).

    • Article
    • Google Scholar
  • 21.

    Stuart, D. et al. The need for a coupled human and natural systems understanding of agricultural nitrogen loss. BioScience 65, 571–578 (2015).

    • Article
    • Google Scholar
  • 22.

    Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218 (2014).

    • Article
    • Google Scholar
  • 23.

    Bünemann, E. K. et al. Soil quality–A critical review. Soil Biol. Biochem. 120, 105–125 (2018).

  • 24.

    Culman, S. W. et al. Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management. Soil Sci. Soc. Am. J. 76, 494–504 (2012).

  • 25.

    Lucas, S. T. & Weil, R. R. Can a Labile Carbon Test be Used to Predict Crop Responses to Improve Soil Organic Matter Management? Agron. J. 104, 1160–1170 (2012).

  • 26.

    Mitchell, J. P. et al. Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil Tillage Res. 165, 325–335 (2017).

    • Article
    • Google Scholar
  • 27.

    Obrycki, J. F., Karlen, D. L., Cambardella, C. A., Kovar, J. L. & Birrell, S. J. Corn Stover Harvest, Tillage, and Cover Crop Effects on Soil Health Indicators. Soil Sci. Soc. Am. J. 82, 910–918 (2018).

  • 28.

    Wang, F., Weil, R. R. & Nan, X. Total and permanganate-oxidizable organic carbon in the corn rooting zone of US Coastal Plain soils as affected by forage radish cover crops and N fertilizer. Soil Tillage Res. 165, 247–257 (2017).

    • Article
    • Google Scholar
  • 29.

    Bongiorno, G. et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic. 99, 38–50 (2019).

  • 30.

    Dick, W. A. & Culman, S. W. Biological and biochemical tests for assessing soil fertility. Soil Fertil. Manag. Agroecosystems 134–147 (2016).

  • 31.

    Hurisso, T. T. et al. Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization. Soil Sci. Soc. Am. J. 80, 1352–1364 (2016).

  • 32.

    Wienhold, B. J. et al. Cropping system effects on soil quality in the Great Plains: Synthesis from a regional project. Renew. Agric. Food Syst. 21, 49–59 (2006).

    • Article
    • Google Scholar
  • 33.

    Franzluebbers, A. J. Soil-Test Biological Activity with the Flush of CO 2: III. Corn Yield Responses to Applied Nitrogen. Soil Sci. Soc. Am. J. 82, 708–721 (2018).

  • 34.

    Yost, M. A. et al. Evaluation of the Haney Soil Health Tool for corn nitrogen recommendations across eight Midwest states. J. Soil Water Conserv. 73, 587–592 (2018).

    • Article
    • Google Scholar
  • 35.

    Clarke, P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. J. Epidemiol. Community Health 62, 752–758 (2008).

  • 36.

    Feller, A. & Gelman, A. Hierarchical models for causal effects. in Emerging Trends in the Social and Behavioral Sciences: An interdisciplinary, searchable, and linkable resource (2015).

  • 37.

    Morris, T. F. et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 110, 1–37 (2018).

    • Article
    • Google Scholar
  • 38.

    Mahal, N. K. et al. Nitrogen fertilizer suppresses mineralization of soil organic matter in maize agroecosystems. Front. Ecol. Evol. 7, 59 (2019).

    • Article
    • Google Scholar
  • 39.

    Swaney, D. P., Howarth, R. W. & Hong, B. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987–2012. Sci. Total Environ. 635, 498–511 (2018).

  • 40.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

  • 41.

    Docherty, K. M. et al. Key edaphic properties largely explain temporal and geographic variation in soil microbial communities across four biomes. PloS One 10, e0135352 (2015).

  • 42.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

  • 43.

    Wade, J., Waterhouse, H., Roche, L. M. & Horwath, W. R. Structural equation modeling reveals iron (hydr) oxides as a strong mediator of N mineralization in California agricultural soils. Geoderma 315, 120–129 (2018).

  • 44.

    Stevens, A. W. Review: The economics of soil health. Food Policy 80, 1–9 (2018).

    • Article
    • Google Scholar
  • 45.

    Zhao, X., Christianson, L. E., Harmel, D. & Pittelkow, C. M. Assessment of drainage nitrogen losses on a yield-scaled basis. Field Crops Res. 199, 156–166 (2016).

    • Article
    • Google Scholar
  • 46.

    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).

  • 47.

    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5, 15–32 (2019).

  • 48.

    Blanco-Canqui, H., Claassen, M. M. & Presley, D. R. Summer cover crops fix nitrogen, increase crop yield, and improve soil–crop relationships. Agron. J. 104, 137–147 (2012).

  • 49.

    Gaudin, A. C., Janovicek, K., Deen, B. & Hooker, D. C. Wheat improves nitrogen use efficiency of maize and soybean-based cropping systems. Agric. Ecosyst. Environ. 210, 1–10 (2015).

  • 50.

    Osterholz, W. R., Liebman, M. & Castellano, M. J. Can soil nitrogen dynamics explain the yield benefit of crop diversification? Field Crops Res. 219, 33–42 (2018).

    • Article
    • Google Scholar
  • 51.

    Tonitto, C., David, M. B. & Drinkwater, L. E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72 (2006).

    • Article
    • Google Scholar
  • 52.

    Khan, S. A., Mulvaney, R. L., Ellsworth, T. R. & Boast, C. W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 36, 1821–1832 (2007).

  • 53.

    Poffenbarger, H. J. et al. Maximum soil organic carbon storage in Midwest US cropping systems when crops are optimally nitrogen-fertilized. PLoS One 12, e0172293 (2017).

  • 54.

    Reid, D. K. Comment on “The Myth of Nitrogen Fertilization for Soil Carbon Sequestration”, by SA Khan et al. in the Journal of Environmental Quality 36: 1821-1832. J. Environ. Qual. 37, 739 (2008).

  • 55.

    van Groenigen, K.-J. et al. Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. 103, 6571–6574 (2006).

  • 56.

    Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biol. Biochem. 75, 54–63 (2014).

  • 57.

    Liu, J. et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology 97, 1796–1806 (2016).

  • 58.

    Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).

  • 59.

    Grandy, A. S. et al. Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric. Ecosyst. Environ. 179, 35–40 (2013).

  • 60.

    Margenot, A. J. et al. Biochemical proxies indicate differences in soil C cycling induced by long-term tillage and residue management in a tropical agroecosystem. Plant Soil 420, 315–329 (2017).

  • 61.

    Tiemann, L. K. & Grandy, A. S. Mechanisms of soil carbon accrual and storage in bioenergy cropping systems. Gcb Bioenergy 7, 161–174 (2015).

  • 62.

    Balmford, A. et al. The environmental costs and benefits of high-yield farming. Nat. Sustain. 1, 477 (2018).

  • 63.

    Randall, G. W. & Mulla, D. J. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J. Environ. Qual. 30, 337–344 (2001).

  • 64.

    Meisinger, J. J. & Delgado, J. A. Principles for managing nitrogen leaching. J. Soil Water Conserv. 57, 485–498 (2002).

    • Google Scholar
  • 65.

    Zhou, M. & Butterbach-Bahl, K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil 374, 977–991 (2014).

  • 66.

    Franzluebbers, A. J. Short-term C mineralization (aka the flush of CO2) as an indicator of soil biological health. CAB Rev. 13, 1–14 (2018).

    • Article
    • Google Scholar
  • 67.

    Haney, R. L., Hons, F. M., Sanderson, M. A. & Franzluebbers, A. J. A rapid procedure for estimating nitrogen mineralization in manured soil. Biol. Fertil. Soils 33, 100–104 (2001).

  • 68.

    Culman, S. W., Snapp, S. S., Green, J. M. & Gentry, L. E. Short- and Long-Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. Agron. J. 105, 493–502 (2013).

  • 69.

    Moyano, F. E. et al. The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences 9, 1173–1182 (2012).

  • 70.

    Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).

  • 71.

    Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A. & Berhe, A. A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 16, 1187–1209 (2019).

  • 72.

    Engelhardt, I. C. et al. Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 12, 1061 (2018).

  • 73.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 74.

    RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2019).

  • 75.

    Hijmans, R. J. et al. Package ‘raster’. R Package (2015).

  • 76.

    Cassman, K. G. Ecological intensification of maize-based cropping systems. Better Crops 101, 4–6 (2017).

    • Google Scholar
  • 77.

    Edreira, J. I. R. et al. Beyond the plot: technology extrapolation domains for scaling out agronomic science. Environ. Res. Lett. 13, 054027 (2018).

  • 78.

    Mulvaney, R. L. Nitrogen—inorganic forms. in Methods of Soil Analysis Part 3—Chemical Methods 1123–1184 (1996).

  • 79.

    Verdouw, H., Van Echteld, C. J. A. & Dekkers, E. M. J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 12, 399–402 (1978).

  • 80.

    Dorich, R. A. & Nelson, D. W. Evaluation of Manual Cadmium Reduction Methods for Determination of Nitrate in Potassium Chloride Extracts of Soils 1. Soil Sci. Soc. Am. J. 48, 72–75 (1984).

  • 81.

    NCR. Recommended Soil Test Procedures for the North Central Region, http://msue.anr.msu.edu/uploads/234/68557/Rec_Chem_Soil_Test_Proce55c.pdf (2011).

  • 82.

    Doane, T. A. & Horwath, W. R. Spectrophotometric Determination of Nitrate with a Single Reagent. Anal. Lett. 36, 2713–2722 (2003).

  • 83.

    NRCS. Recommended Soil Health Indicators and Associated Laboratory Procedures, https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download/?cid=nrcseprd1420229&ext=pdf (2019).

  • 84.

    Moebius-Clune, B. N. et al. Comprehensive Assessment of Soil Health – The Cornell Framework Manual. (Cornell University, 2017).

  • 85.

    Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17 (2003).

    • Article
    • Google Scholar
  • 86.

    Hurisso, T. T. et al. Soil Protein as a Rapid Soil Health Indicator of Potentially Available Organic Nitrogen. Agric. Environ. Lett. 3 (2018).

    • Article
    • Google Scholar
  • 87.

    Franzluebbers, A. J. S. S. Testing Services Measure Soil Biological Activity? Agric. Environ. Lett. 1 (2016).

  • 88.

    Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Schomberg, H. H. & Hons, F. M. Flush of Carbon Dioxide Following Rewetting of Dried Soil Relates to Active Organic Pools. Soil Sci. Soc. Am. J. 64, 613–623 (2000).

  • 89.

    Cambardella, C. A. et al. Estimation of particulate and total organic matter by weight loss-on-ignition. in Assessment Methods for Soil Carbon 349–359 (CRC Press, 2001).

  • 90.

    USDA. Soil Survey Manual. (US Department of Agriculture, 1993).

  • 91.

    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. in Methods of Soil Analysis Part 3—Chemical Methods 961–1010 (1996).

  • 92.

    Pribyl, D. W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 156, 75–83 (2010).

  • 93.

    Fabrigar, L. R. & Wegener, D. T. Exploratory factor analysis. (Oxford University Press, 2011).

  • 94.

    Thurstone, L. L. Multiple-factor analysis: a development and expansion of The Vectors of Mind. (University of Chicago Press, 1947).

  • 95.

    Spearman, C. General Intelligence,’ objectively determined and measured. Am. J. Psychol. 15, 201–292 (1904).

    • Article
    • Google Scholar
  • 96.

    Raiche, G. & Magis, D. Package ‘nFactors’: Parallel analysis and non graphical solutions to the Cattell scree test. (Version, 2014).

  • 97.

    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models. (Cambridge university press, 2006).

  • 98.

    Rosseel, Y. et al. lavaan: An R Package for Structural Equation Modeling. (2018).

  • 99.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

  • 100.

    Hu, L. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 6, 1–55 (1999).

    • Article
    • Google Scholar
  • 101.

    Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82, 171–185 (1987).

  • 102.

    Hayes, A. F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 76, 408–420 (2009).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Flash droughts present a new challenge for subseasonal-to-seasonal prediction

    Green gravel: a novel restoration tool to combat kelp forest decline