in

Enhanced heat tolerance of viral-infected aphids leads to niche expansion and reduced interspecific competition

  • 1.

    Rohwer, F., Prangishvili, D. & Lindell, D. Roles of viruses in the environment. Environ. Microbiol. 11, 2771–2774 (2009).

  • 2.

    Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl Acad. Sci. USA 107, 3600–3605 (2010).

  • 3.

    Ingwell, L. L., Eigenbrode, S. D. & Bosque-Pérez, N. A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2, https://doi.org/10.1038/srep00578 (2012).

  • 4.

    Casteel, C. L. et al. The Niaro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J. 77, 653–663 (2014).

  • 5.

    Eigenbrode, S. D., Ding, H., Shiel, P. & Berger, P. H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. Lond. Ser. B 269, 455–460 (2002).

  • 6.

    Poulin, R. Manipulation of host behaviour by parasites: a weakening paradigm?. Proc. R. Soc. Lond. Ser. B 267, 787–792 (2000).

  • 7.

    Poulin, R. in Advances in the Study of Behavior (eds Brockmann, H. J. et al.), Ch. 5, 151–186 (Academic Press, Burlington, 2010).

  • 8.

    Hughes, D. P. et al. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11, 13 (2011).

  • 9.

    Holt, R. D. & Dobson, A. P. in Disease Ecology: Community Structure and Pathogen Dynamics (eds Collinge, S. K. & Ra, C.) 6–27 (Oxford Univ. Press, Oxford, 2006).

  • 10.

    Dunbar, H. E., Wilson, A. C., Ferguson, N. R. & Moran, N. A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5, e96 (2007).

  • 11.

    Parker, B. J. & Brisson, J. A. Laterally transferred viral gene modifies aphid wing plasticity. Curr. Biol. 29, 2098–2103.e5 (2019).

  • 12.

    Hatcher, M. J., Dick, J. T. & Dunn, A. M. How parasites affect interactions between competitors and predators. Ecol. Lett. 9, 1253–1271 (2006).

  • 13.

    Johnson, P. T. & Hoverman, J. T. Parasite diversity and coinfection determine pathogen infection success and host fitness. Proc. Natl Acad. Sci. USA 109, 9006–9011 (2012).

  • 14.

    Lefèvre, T. et al. New prospects for research on manipulation of insect vectors by pathogens. PLoS Pathog. 2, e72 (2006).

  • 15.

    Lefevre, T. & Thomas, F. Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases. Infect. Genet. Evol. 8, 504–519 (2008).

  • 16.

    Stafford, C. A., Walker, G. P. & Ullman, D. E. Infection with a plant virus modifies vector feeding behavior. Proc. Natl Acad. Sci. USA 108, 9350–9355 (2011).

  • 17.

    Koella, J. C., Rieu, L. & Paul, R. E. Stage-specific manipulation of a mosquito’s host-seeking behavior by the malaria parasite Plasmodium gallinaceum. Behav. Ecol. 13, 816–820 (2002).

    • Article
    • Google Scholar
  • 18.

    Lee, S. J., Kang, D., Lee, S. C. & Ha, Y. R. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis. Sci. Rep. 6, 20464 (2016).

  • 19.

    De Moraes, C. M. et al. Malaria-induced changes in host odors enhance mosquito attraction. Proc. Natl. Acad. Sci. USA 111, 11079–11084 (2014).

  • 20.

    De Boer, J. G. et al. Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions. Sci. Rep. 7, 9283 (2017).

  • 21.

    O’Shea, B. et al. Enhanced sandfly attraction toLeishmania-infected hosts. Trans. R. Soc. Trop. Med. Hyg. 96, 117–118 (2002).

  • 22.

    Cornet, S., Nicot, A., Rivero, A. & Gandon, S. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol. Lett. 16, 323–329 (2013).

  • 23.

    Porras, M., De Moraes, C. M., Mescher, M. C., Rajotte, E. G. & Carlo, T. A. A plant virus (BYDV) promotes trophic facilitation in aphids on wheat. Sci. Rep. 8, 11709 (2018).

  • 24.

    Poulin, R. “Adaptive” change in the behaviour of parasitized animals: a critical review. Int. J. Parasitol. 25, 1371–1383 (1995).

  • 25.

    Anderson, R. M. & May, R. M. Infectious Diseases of Humans (Oxford Univ. Press, Oxford, 1991).

    • Google Scholar
  • 26.

    Márquez, L. M., Redman, R. S., Rodriguez, R. J. & Roossinck, M. A. Virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315, 513–515 (2007).

  • 27.

    Malmstrom, C. M., Melcher, U. & Bosque-Pérez, N. A. The expanding field of plant virus ecology: historical foundations, knowledge gaps, and research directions. Virus Res. 159, 84–94 (2011).

  • 28.

    Xu, P. et al. Virus infection improves drought tolerance. N. Phytol. 180, 911–921 (2008).

    • Article
    • Google Scholar
  • 29.

    Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

  • 30.

    Johnson, P. T., Preston, D. L., Hoverman, J. T. & LaFonte, B. E. Host and parasite diversity jointly control disease risk in complex communities. Proc. Natl Acad. Sci. USA 110, 16916–16921 (2013).

  • 31.

    Hechinger, R. F. Parasites help find universal ecological rules. Proc. Natl Acad. Sci. USA 112, 1656–1657 (2015).

  • 32.

    Holt, R. D. & Bonsall, M. B. Apparent competition. Annu. Rev. Ecol. Evol. Syst. 48, 447–471 (2017).

    • Article
    • Google Scholar
  • 33.

    Memmott, J., Martinez, N. D. & Cohen, J. E. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J. Anim. Ecol. 69, 1–15 (2000).

    • Article
    • Google Scholar
  • 34.

    Ba-Angood, S. A. & Stewart, R. K. Occurrence, development, and distribution of cereal aphids on early and late cultivars of wheat, barley, and oats in southwestern Quebec. Can. Entomol. 112, 615–620 (1980).

    • Article
    • Google Scholar
  • 35.

    Barro, P. J. & Wallwork, H. The role of annual grasses in the phenology of Rhopalosiphum padi in the low rainfall belt of South Australia. Ann. Appl. Biol. 121, 455–467 (1992).

    • Article
    • Google Scholar
  • 36.

    Harrington, R. et al. Environmental change and the phenology of European aphids. Glob. Change Biol. 13, 1550–1564 (2007).

  • 37.

    Dixon, A. F. G Aphid Ecology: An Optimization Approach (Springer, Netherlands, 2012).

    • Google Scholar
  • 38.

    Inbar, M. & Wool, D. Phloem-feeding specialists sharing a host tree: resource partitioning minimizes interference competition among galling aphid species. Oikos 73, 109–119 (1995).

    • Article
    • Google Scholar
  • 39.

    Mei, H. K., Ming, C. C. & Jen, J. P. Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphum maidis (Homoptera: Aphididae) on corn in Taiwan. Appl. Entomol. Zool. 41, 71–177 (2006).

    • Google Scholar
  • 40.

    Valenzuela, I. A Molecular Analysis of Aphids (Hemiptera: Aphididae) in South Eastern Australia. Ph.D thesis, The University of Melbourne (2008).

  • 41.

    MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    • Article
    • Google Scholar
  • 42.

    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982).

    • Google Scholar
  • 43.

    Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Am. Zool. 19, 331–343 (1979).

    • Article
    • Google Scholar
  • 44.

    Angilleta, M. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, Oxford, 2009).

    • Google Scholar
  • 45.

    Caillon, R., Suppo, C., Casas, J., Woods, H. & Pincebourde, S. Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods. Funct. Ecol. 28, 1449–1458 (2014).

    • Article
    • Google Scholar
  • 46.

    Ma, G. & Ma, C. S. Effect of acclimation on heat-escape temperatures of two aphid species: implications for estimating behavioral response of insects to climate warming. J. Insect Physiol. 58, 303–309 (2012).

  • 47.

    Ma, G. & Ma, C. S. Climate warming may increase aphids’ dropping probabilities in response to high temperatures. J. Insect Physiol. 58, 1456–1462 (2012).

  • 48.

    Pusag, J. C. A., Jahan, S. H., Lee, K. S., Lee, S. & Lee, K. Y. Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus (TYLCV). J. Insect Physiol. 58, 1343–1348 (2012).

  • 49.

    Xu, D., Zhong, T., Feng, W. & Zhou, G. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus. Sci. Rep. 6, 31521 (2016).

  • 50.

    Habourdin, C., Klein, G., Araki, T., Williams, J. G. & Aubry, L. The arrestin-domain containing protein AdcA is a response element to stress. Cell Commun. Signal. 11, 91–15 (2013).

  • 51.

    Zhang, F., Zhao, Y., Chao, Y., Muir, K. & Han, Z. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J. Am. Soc. Nephrol. 24, 209–216 (2013).

  • 52.

    Chaerle, L. et al. Presymptomatic visualization of plant-virus interactions by thermography. Nat. Biotechnol. 17, 813–816 (1999).

  • 53.

    Miller, W. A. & Rasochová, L. Barley yellow dwarf viruses. Annu. Rev. Phytopathol. 35, 167–190 (1997).

  • 54.

    Hochachka, P. W. & Somero, G. N. Strategies of Biochemical Adaptation (WB Saunders, Philadelphia, 1973).

    • Google Scholar
  • 55.

    Sørensen, J. G., Kristensen, T. N. & Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037 (2003).

    • Article
    • Google Scholar
  • 56.

    Van den Heuvel, J. F. et al. The N-terminal region of the luteovirus read through domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71, 7258–7265 (1997).

  • 57.

    Gray, S. M., Power, A. G., Smith, D. M., Seaman, A. J. & Altman, N. S. Aphid transmission of barley yellow dwarf virus: Acquisition access periods and virus concentration requirements. Phytopathology 81, 539–545 (1991).

    • Article
    • Google Scholar
  • 58.

    Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H. & Zemetra, R. S. Life history of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae), on transgenic and untransformed wheat challenged with barley yellow dwarf virus. J. Econ. Entomol. 97, 203–212 (2004).

  • 59.

    Leinonen, I. & Jones, H. G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 55, 1423–1431 (2004).

  • 60.

    Ribeiro, P. L., Camacho, A. & Navas, C. A. Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf-cutting ants. PLoS ONE 7, e32083 (2012).

  • 61.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 62.

    Trapnell, C., Lior, P. & Steven, L. S. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

  • 63.

    Goff, L. A., Trapnell, C. & Kelley, D. CummeRbund: Visualization and Exploration of Cufflinks High-Throughput Sequencing Data. R Package Version 2.2.0 (2012).

  • 64.

    Fussnecker, B. L., McKenzie, A. M. & Grozinger, C. M. cGMP modulates responses to queen mandibular pheromone in worker honey bees. J. Comp. Physiol. A 197, 939–948 (2011).

  • 65.

    Hellerstein, D. & Mendelsohn, R. A theoretical foundation for count data models. Am. J. Agric. Econ. 75, 604–611 (1993).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship

    Divergent mammalian body size in a stable Eocene greenhouse climate