
Boggs, C. L. Resource allocation: exploring connections between foraging and life history. Funct. Ecology. 6, 508–518 (1992).
English, S. & Bonsall, M. B. Physiological dynamics, reproduction-maintenance allocations, and life history evolution. Ecol. Evolution 9, 9312–9323 (2019).
Karasov, W. H. & del Rio, C. M. Physiological ecology: how animals process energy, nutrients, and toxins. (Princeton University Press, 2007).
Severinsen, T. & Munch, I. C. Body core temperature during food restriction in rats. Acta Physiol. Scand. 165, 299–305 (1999).
Wang, T., Hung, C. C. & Randall, D. J. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68, 223–251 (2006).
Cao, J., Zhang, L. & Zhao, Z. Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J. Therm. Biol. 34, 290–298 (2009).
Bozinovic, F. & Méndez, M. A. Role of dietary fatty acids on energetics and torpor in the chilean mouse-opossum Thylamys elegans. Comp. Biochem. Physiol. 116A, 101–104 (1997).
Bozinovic, F., Muñoz, J. L. P., Naya, D. E. & Cruz-Neto, A. P. Adjusting energy expenditures to energy supply: food availability regulates torpor use and organ size in the chilean mouse-opossum Thylamys elegans. J. Comp. Physiol. B Biochem. Syst. Env. Physiol. 177, 393–400 (2007).
Bozinovic, F., Ruiz, G. & Rosenmann, M. Energetics, thermoregulation and torpor in the chilean mouse-opossum Thylamys elegans (Didelphidae). Rev. Chil. Hist. Nat. 78, 199–206 (2005).
Karasov, W. H. & Diamond, J. M. Adaptive regulation of sugar and amino acids transport by vertebrate intestine. Am. J. Physiol. 245, G443–G462 (1983).
Carey, H. V. Gastrointestinal responses to fasting in mammals: lessons from hibernators. In: Starck, J. M. & Wang, T. (eds) Physiological and ecological adaptations to feeding in vertebrates. (Science Publishers, 2005).
Naya, D. E. & Bozinovic, F. The role of ecological interactions on the physiological flexibility of lizards. Funct. Ecol. 20, 601–608 (2006).
Zhao, Z. J., Chen, K. X., Liu, Y. A., Wang, C. M. & Cao, J. Decreased circulating leptin and increased neuropeptide Y gene expression are implicated in food deprivation-induced hyperactivity in striped hamsters, Cricetulus barabensis. Horm. Behav. 65, 355–362 (2014).
Hebebrand, J. et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol. Behav. 79, 25–37 (2003).
Overton, J. M. & Williams, T. D. Behavioral and physiologic responses to caloric restriction in mice. Physiol. Behavior. 81, 749–54 (2004).
Zhao, Z. J. & Cao, J. Plasticity in energy budget and behavior in Swiss mice and striped hamsters under stochastic food deprivation and refeeding. Comp. Biochem. Physiol. A. 154, 84–91 (2009).
Zhu, W. L. Y., Mu, H., Zhang, W. R., Gao, L. & Zhang, Z. K. Wang. Effects of random food deprivation on body mass, behavior and serum leptin levels in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). Italian J. Zoology. 81, 227–234 (2014).
Peña-Villalobos, I., Casanova-Maldonado, I., Lois, P., Sabat, P. & Palma, V. Adaptive physiological and morphological adjustments mediated by intestinal stem cells in response to food availability in mice. Frontiers in physiology, 9 (2018).
Zhang, L. N. et al. Physiological and behavioral responses to intermittent starvation in C57BL/6J mice. Physiol. Behavior. 105, 376–387 (2012).
Asakawa, A. et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 120, 337–345 (2001).
Holtkamp, K., Hebebrand, J. & Herpertz-Dahlmann, B. The contribution of anxiety and food restriction on physical activity levels in acute anorexia nervosa. Int. J. Eat. Disord. 36, 163–171 (2004).
Jensen, T. L., Kiersgaard, M. K., Sørensen, D. B. & Mikkelsen, L. F. Fasting of mice: a review. Laboratory Animals. 47, 225–240 (2013).
Mathot, K. J. & Dingemanse, N. J. Energetics and behavior: unrequited needs and new directions. Trends Ecol. evolution. 30, 199–206 (2015).
Maldonado, K., van Dongen, W. F. D., Vásquez, R. A. & Sabat, P. Geographic Variation in the Association between Exploratory Behavior and Physiology in Rufous-Collared Sparrows. Physiol. Biochem. Zool. 85, 618–624 (2012).
Houston, A. I. Evolutionary models of metabolism, behaviour and personality. Proc. R. Soc. Lond. [Biol]. 365, 3969–3975 (2010).
Careau, V. & Garland, T. Jr. Performance, personality, and energetics: correlation, causation, and mechanism. Physiol. Biochem. Zool. 85, 543–571 (2012).
Careau, V., Thomas, D., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos. 117, 641–653 (2008).
Svensson, J., Soderpalm, B., Sjogren, K., Engel, J. & Ohlsson, C. Liver-derived IGF-I regulates exploratory activity in old mice. Am. J. Physiol. Endocrinol. Metab. 289, E466–E473 (2005).
Cornu, M. et al. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. PNAS 111, 11592–11599 (2014).
Hempenstall, S., Page, M. M., Wallen, K. R. & Selman, C. Dietary restriction increases skeletal muscle mitochondrial respiration but not mitochondrial content in C57BL/6 mice. Mech. Ageing Dev. 133, 37–45 (2012).
Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).
Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).
Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity? Trends Ecol. Evol. 23, 361–368 (2008).
Alyan, S. & Jander, R. Exploration is sufficient but not necessary for navigation with landmarks in the house mouse (Mus musculus). Learn. Motiv. 28, 558–576 (1997).
Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2008).
Careau, V., Bininda-Emonds, O. R. P., Thomas, D. W., Réale, D. & Humphries, M. M. Exploration strategies map along fast–slow metabolic and life-history continua in muroid rodents. Funct. Ecology. 23, 150–156 (2009).
Wong, B. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
Brzęk, P., Gębczyński, A. K., Książek, A. & Konarzewski, M. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR). Physiol. Behavior. 161, 116–122 (2016).
Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Asp. Med. 32, 159–221 (2011).
Brown, J. C. L. & Staples, J. F. Mitochondrial metabolism during fasting-induced daily torpor in mice. BBA – Bioenergetics. 1797, 476–486 (2010).
Hagopian, K., Hoo, R. S., López-Domínguez, J. A. & Ramsey, J. J. Calorie restriction influences key metabolic enzyme activities and markers of oxidative damage in distinct mouse liver mitochondrial sub-populations. Life Sci. 93, 941–948 (2013).
Oishi, K. et al. FGF21 is dispensable for hypothermia induced by fasting in mice. Neuroendocrinol. Lett. 31, 198–202 (2010).
Hill, C. M. et al. FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism. Cell rep. 27, 2934–2947 (2019).
Cintron-Colon, R. et al. Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. PNAS 114, 9731–9736 (2017).
Brunori, M., Giuffre, A. & Sarti, P. Cytochrome c oxidase, ligands and electrons. J. Inorg. Biochemistry. 99, 324–336 (2005).
Mitchell, S. E. et al. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse. Oncotarget. 6, 18314 (2015).
Fink, G. (Ed.) Stress science: neuroendocrinology. (Academic Press, 2010).
Weindruch, R., Kirstie, J. A., Cheney, K. E. & Walford, R. L. Influence of controlled dietary restriction on immunologic function and aging. Federation proceedings. 38, 2007–2016 (1979).
Cheney, K. E. et al. The effect of dietary restriction of varying duration on survival, tumor patterns, immune function, and body-temperature in B10C3F1 female mice. J. Gerontology. 38, 420–430 (1983).
Duffy, P. H., Feuers, R., Nakamura, K. D., Leakey, J. & Hart, R. W. Effect of chronic caloric restriction on the synchronization of various physiological measures in old female Fischer-344 rats. Chronobiology International. 7, 113–124 (1990a).
Duffy, P. H., Feuers, R. J. & Hart, R. W. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice. Chronobiology International. 7, 291–303 (1990b).
Weindruch, R., Kayo, T., Lee, C. K. & Prolla, T. A. Gene expression profiling of aging using DNA microarrays. Mech. Ageing Dev. 123, 177–193 (2002).
Ferguson, M., Sohal, B. H., Forster, M. J. & Sohal, R. S. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice. Mech. Ageing Dev. 128, 539–545 (2007).
Carrillo, A. E. & Flouris, A. D. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res. Rev. 10, 153–162 (2011).
Lusseau, D. et al. The effects of graded levels of calorie restriction: IV. Non-linear change in behavioural phenotype of mice in response to short-term calorie restriction. Sci. Rep. 5, 13198 (2015).
Gordon, C. J. Temperature regulation in laboratory rodents. (Cambridge Univ. Press. 1993).
Swan, H. Thermoregulation and bioenergetics. (Elsevier, 1974)
Smith, R. E. & Horwitz, B. A. Brown fat and thermogenesis. Physiological Reviews. 49, 330–425 (1969).
Trayhurn, P. Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity. Biochimie. 134, 62–70 (2017).
Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes. Dev. 22, 1753–1757 (2008).
Zhang, L. & Wang, D. Effects of food restriction and refeeding on energy balance regulation in Mongolian gerbils (Meriones unguiculatus). Appetite. 3, 758 (2008).
Zhao, Z. J. & Wang, D. H. Effects of diet quality on energy budgets and thermogenesis in Brandt’s voles. Comp. Biochem. Physiol. 148, A168–A177 (2007).
Gelegen, C., Collier, D. A., Campbell, I. C., Oppelaar, H. & Kas, M. J. H. Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains. Am. J. Physiol. Endocrinol. Metab. 291, 574–581 (2006).
Morse, A. D. et al. Diurnal variation of intensive running in food-deprived rats. Can. J. Physiol. Pharmacol. 73, 1519–1523 (1995).
Karasov, W. H. Nutritional bottleneck in a herbivore, the desert wood rat (Neotoma lepida). Physiol. Zool. 62, 1351–1382 (1989).
Sassi, P. L., Borghi, C. E., Dacar, M. A. & Bozinovic, F. Geographic and seasonal variability in feeding behaviour of a small herbivorous rodent. Acta Theriol. 56, 35–43 (2011).
Brown, K. J. & Downs, C. T. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis). Comp. Biochem. Physiol, Part. A: Mol. Integr. Physiol. 143, 42–49 (2006).
Withers, P. C. Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J. Appl. Physiol. 42, 120–123 (1977).
Wunder, B. A. & Gettinger, R. D. Effects of body mass and temperature acclimation on the nonshivering thermogenic response of small mammals. Pp. 131–139 In F. Geiser, A. J. Hulbert and S. C. Nicol, eds. Adaptations to the Cold: Tenth International Hibernation Symposium. 1st ed. (University of New England Press, 1996).
Zhu, W. L., Jia, T., Lian, X. & Wang, Z. K. Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermognesis in Eothenomys miletus in Hengduan Mountains region. J. Therm. Biol. 35, 41–46 (2010).
Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
Speakman, J. R., Gidney, A., Bett, J., Mitchell, I. P. & Johnson, M. S. Limits to sustained energy intake IV: Effect of variation in food quality on lactating mice Mus musculus. J. Exp. Biol. 204, 1957–1965 (2001).
Wilson, R. C., Thomas, V., Lanier, D. L. & Dewsbury, D. A. Open‐field behavior in Muroid rodents. Behav. Biology. 17, 495–506 (1976).
Telonis, A. G. & Margarity, M. Phobos: a novel software for recording rodents’ behavior during the thigmotaxis and the elevated plus-maze test. Neurosci. letters. 599, 81–85 (2015).
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. biochemistry. 72, 248–254 (1976).
Moyes, C. D., Mathieu-Costello, O. A., Tsuchiya, N., Filburn, C. & Hansford, R. G. Mitochondrial biogenesis during cellular differentiation. Am. J. Physiol. Cell Physiol. 272, C1345–C1351 (1997).
Sidell, B. D., Driedzic, W. R., Stowe, D. B. & Johnston, I. A. Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol. Zool. 60, 221–232 (1987).
Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).
Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).
Source: Ecology - nature.com
