in

Rice fields along the East Asian-Australasian flyway are important habitats for an inland wader’s migration

  • 1.

    Zöckler, C., Delany, S. & Hagemeijer, W. Wader populations are declining: How will we elucidate the reasons? Wader Study Group Bull. 100, 202–211 (2003).

    • Google Scholar
  • 2.

    Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: an example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).

    • Article
    • Google Scholar
  • 3.

    Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Group Bull. 119, 178–194 (2012).

    • Google Scholar
  • 4.

    Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895, https://doi.org/10.1038/ncomms14895 (2017).

  • 5.

    Li, X. et al. Assessing changes of habitat quality for shorebirds in stopover sites: a case study in Yellow River Delta, China. Wetlands 39, 66–77 (2019).

    • Google Scholar
  • 6.

    Bart, J., Brown, S., Harrington, B. & Morrison, R. I. G. Survey trends of North American shorebirds: Population declines or shifting distributions? J. Avian. Biol. 38, 73–82 (2007).

    • Article
    • Google Scholar
  • 7.

    Piersma, T. & Lindström, Å. Migrating shorebirds as integrative sentinels of global environmental change. Ibis 146, 61–69, https://doi.org/10.1111/J.1474-919X.2004.00329.x (2004).

    • Article
    • Google Scholar
  • 8.

    Minton, C. et al. Geolocator studies on ruddy turnstones Arenaria interpres and greater sandplovers Charadrius leschenaultii in the East Asian-Australasia Flyway reveal widely different migration strategies. Wader Study Group Bull 118, 87–96 (2011).

    • Google Scholar
  • 9.

    Minton, C. et al. Recoveries and flag sightings of waders which spend the non-breeding season in Australia. Stilt 59, 17–43 (2011).

    • Google Scholar
  • 10.

    Battley, P. F. et al. Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J. Avian Biol. 43, 21–32, https://doi.org/10.1111/j.1600-048X.2011.05473.x (2012).

    • Article
    • Google Scholar
  • 11.

    Johnson, O. W. et al. New insight concerning transoceanic migratory pathways of Pacific golden-plovers (Pluvialis fulva): the Japan stopover and other linkages as revealed by geolocators. Wader Study Group Bull 119, 1–8 (2012).

    • Google Scholar
  • 12.

    Mu, T., Tomkovich, P. S., Loktionov, E. Y., Syroechkovskiy, E. E. & Wilcove, D. S. Migratory routes of red-necked phalaropes Phalaropus lobatus breeding in southern Chukotka revealed by geolocators. J. Avian Biol. e01853; https://doi.org/10.1111/jav.01853 (2018).

  • 13.

    Fudickar, A. M., Wikelski, M. & Partecke, J. Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol. Evol. 3, 47–52, https://doi.org/10.1111/j.2041-210X.2011.00136.x (2012).

    • Article
    • Google Scholar
  • 14.

    Hays, G. C., Åkesson, S., Godley, B. J., Luschi, P. & Santidrian, P. The implications of location accuracy for the interpretation of satellite-tracking data. Anim. Behav. 61, 1035–1040 (2001).

    • Article
    • Google Scholar
  • 15.

    Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshwater Res. 65, 934–941 (2014).

    • Article
    • Google Scholar
  • 16.

    Amano, T. Conserving bird species in Japanese farmland: past achievements and future challenges. Biol. Conserv. 142, 1913–1921 (2009).

    • Article
    • Google Scholar
  • 17.

    Elphick, C. S. Functional equivalency between rice fields and semi-natural wetland habitats. Conserv. Biol. 14, 181–191 (2000).

    • Article
    • Google Scholar
  • 18.

    Xiao, X. et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ. 100, 95–113 (2006).

  • 19.

    Hallworth, M. T. & Marra, P. P. Miniaturized GPS tags identify non-breeding territories of a small breeding migratory songbird. Sci. Rep. 5, 11069, https://doi.org/10.1038/srep11069 (2015).

  • 20.

    Jung, T. S. et al. Accuracy and performance of low-feature GPS collars deployed on bison Bison bison and caribou Rangifer tarandus. Wildl. Biol. 2018, https://doi.org/10.2981/wlb.00404 (2018).

  • 21.

    Marquardt, D. D. et al. Assessment of GPS Transmitters for Use on Northern Bobwhite Quail. JSAFWA 4, 100–108 (2017).

    • Google Scholar
  • 22.

    Cramp, S. & Simmons, K.E.L. Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. 3. Waders to gulls (Oxford University Press, NY, 1983).

  • 23.

    del Hoyo, J., Elliot, A. & Sargatal, J. (Eds), Handbook of the Birds of the World. Vol. 3. Hoatzin to Auk (Lynx Editions, Barcelona, Spain, 1996).

  • 24.

    BirdLife International. Charadrius dubius. The IUCN Red List of Threatened Species 2016: e.T22693770A86577884, https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22693770A86577884.en (2016).

  • 25.

    Clements, J. F. et al. The Clements checklist of birds of the world: Version 2018, http://www.birds.cornell.edu/clementschecklist/download/ (2018).

  • 26.

    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian – Australasian Flyway; Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, Australia, 2008).

  • 27.

    Dickinson, E. C. & Remsen, J. V. Jr. (Eds), The Howard & Moor Complete Checklist of the Birds of the World. 4th. Edition, Vol. 1. Non-passerines (Aves Press, Eastbourne, U.K. 2013).

  • 28.

    Hedenström, A., Klaassen, R. H. G. & Åkesson, S. Migration of the little ringed plover Charadrius dubius breeding in south Sweden tracked by geolocators. Bird Study 60, 466–474 (2013).

    • Article
    • Google Scholar
  • 29.

    Ministry of the Environment of Japan. Web-GIS Atlas of Birds (Bird Banding Survey, Data of recovery records), http://www.biodic.go.jp/birdRinging_en/index.html (2018).

  • 30.

    Nakamura, K., Tockner, K. & Amano, K. River and wetland restoration: lessons from Japan. BioScience. 56, 419–429 (2006).

    • Article
    • Google Scholar
  • 31.

    Yabuhara, Y., Yamaura, Y., Akasaka, T. & Nakamura, F. Predicting long-term changes in riparian bird communities in floodplain landscapes. River Res. Appl. 31, 109–119 (2015).

    • Article
    • Google Scholar
  • 32.

    Ornithological Society of Japan. Check-list of Japanese birds (Gakken, Tokyo, 2000).

  • 33.

    Bellio, M., Minton, C. & Veltheim, I. Challenges faced by shorebird species using the inland wetlands of the East Asian-Australasian Flyway: the little curlew example. Mar. Freshwater Res. 68, 999–1009 (2017).

    • Article
    • Google Scholar
  • 34.

    Lisovski, S. et al. Movement patterns of sanderling (Calidris alba) in the East Asian-Australasian Flyway and a comparison of methods for identification of crucial areas for conservation. Emu-Austral Ornithology 116, 168–177 (2016).

    • Article
    • Google Scholar
  • 35.

    Council of Agriculture, Executive Yuan, ROC. Farm land area structure. Council of Agriculture, Executive Yuan, ROC, https://echart.coa.gov.tw/index.php?cid=28 (2018).

  • 36.

    Chang, Y. C., Uphoff, N. T. & Yamaji, E. A conceptual framework for eco-friendly paddy farming in Taiwan, based on experimentation with System of Rice Intensification (SRI) methodology. Paddy and water environment 14, (169–183 (2016).

  • 37.

    Silva, J. V., Reidsma, P., Velasco, M. L., Laborte, A. G. & van Ittersum, M. K. Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels. Agricultural systems 165, 55–70 (2018).

    • Article
    • Google Scholar
  • 38.

    Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. The Condor 116, 384–393 (2014).

    • Article
    • Google Scholar
  • 39.

    Kuo, C. C. et al. Cascading effect of economic globalization on human risks of scrub typhus and tick-borne rickettsial diseases. Ecol. Appl. 22, 1803–1816 (2012).

    • Article
    • Google Scholar
  • 40.

    Ferng, J. J. Effects of food consumption patterns on paddy field use in Taiwan. Land Use Policy 26, 772–781 (2009).

    • Article
    • Google Scholar
  • 41.

    Stuecker, M. F., Tigchelaar, M. & Kantar, M. B. Climate variability impacts on rice production in the Philippines. PLoS ONE 13, e0201426, https://doi.org/10.1371/journal.pone.0201426 (2018).

  • 42.

    Hewson, C. M., Thorup, K., Pearce-Higgins, J. W. & Atkinson, P. W. Population decline is linked to migration route in the common cuckoo. Nat. Commun. 7, 12996 (2016).

    • Article
    • Google Scholar
  • 43.

    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).

  • 44.

    Fujioka, M., Lee, S. D., Kurechi, M. & Yoshida, H. Bird use of rice fields in Korea and Japan. Waterbirds 33, 8–29 (2010).

    • Article
    • Google Scholar
  • 45.

    Saunders, S. P., Roche, E. A., Arnold, T. W. & Cuthbert, F. J. Female site familiarity increases fledging success in piping plovers (Charadrius melodus). The Auk 129, 329–337 (2012).

    • Article
    • Google Scholar
  • 46.

    Haig, S. M. & Oring, L. W. Mate, site, and territory fidelity in piping plovers. The Auk 105, 268–277 (1988).

    • Article
    • Google Scholar
  • 47.

    Cohen, J. B. & Gratto-Trevor, C. Survival, site fidelity, and the population dynamics of piping plovers in Saskatchewan. J. Field Ornithol 82, 379–394 (2011).

    • Article
    • Google Scholar
  • 48.

    Barter, M. Shorebirds of the Yellow Sea: Importance, Threats and Conservation Status. Wetlands International Global Series 9. Int. Wader Stud. 12 (Canberra, Australia, 2002).

  • 49.

    Hall, L. K. & Cavitt, J. F. Comparative study of trapping methods for ground-nesting shorebirds. Waterbirds 35, 342–346 (2012).

    • Article
    • Google Scholar
  • 50.

    Bub, H. Bird Trapping and Bird Banding (Cornell University Press, Ithaca, NY, 1991).

  • 51.

    Rappole, J. H. & Tipton, A. R. New Harness design for attachment of radio transmitters to small passerines. J. Field Ornithol. 62, 335–337 (1991).

    • Google Scholar
  • 52.

    Geen, G. R., Robinson, R. A. & Baillie, S. R. Effects of tracking devices on individual birds-a review of the evidence. J. Avian Biol., https://doi.org/10.1111/jav.01823 (2019).

  • 53.

    QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project, http://qgis.osgeo.org (2018)

  • 54.

    Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    • Article
    • Google Scholar
  • 55.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from, https://www.R-project.org/ (2018).

  • 56.

    Kobayashi, T. et al. Production of Global Land Cover Data-GLCNMO2013. Journal of Geography and Geology 9, 1–15, https://doi.org/10.5539/jgg.v9n3p1 (2017).

    • Article
    • Google Scholar
  • 57.

    Bagan, H., Wang, Q., Watanabe, M., Yonghui, Y. & Jianwen, M. Land cover classification from MODIS EVI times-series data using SOM neural network. Int. J. Remote Sens. 26, 4999–5012 (2005).

  • 58.

    Feng, X. et al. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manage. 85, 563–573 (2007).

  • 59.

    BSWM. National Capability Building for Philippine Land Degradation Assessment and Climate Change Adaptation (FAO/TCP/PHI/3302), http://www.bswm.da.gov.ph/ladaphilippines/index.html (2013).

  • 60.

    Wardrop, N. A. et al. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan. Geospatial Health 8, 229–239 (2013).

    • Article
    • Google Scholar
  • 61.

    Huang, J. C. et al. Effects of different N sources on riverine DIN export and retention in subtropical high-standing island, Taiwan. Biogeosciences 13, 1787–1800 (2016).

  • 62.

    National Land Surveying and Mapping Center. Taiwan MAP Service, https://maps.nlsc.gov.tw/EN/ (2018).

  • 63.

    Yamashina Institute for Ornithology, Bird banding manual 11th revision, http://www.biodic.go.jp/banding/pdf/banding_manual.pdf, (Japanese only, 2009).


  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps