in

Tuning up microbiome analysis to monitor WWTPs’ biological reactors functioning

  • 1.

    Alvarino, T., Suarez, S., Lema, J. & Omil, F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Sci. Total Environ. 615, 297–306 (2017).

  • 2.

    Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

  • 3.

    Xia, Y., Wen, X., Zhang, B. & Yang, Y. Diversity and assembly patterns of activated sludge microbial communities: a review. Biotechnol. Adv. 36, 1038–1047 (2018).

  • 4.

    Wan, C. Y. et al. Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment. Water Res. 45, 1129–1138 (2011).

  • 5.

    Zhang, S., Zhou, Z., Li, Y. & Meng, F. Deciphering the core fouling-causing microbiota in a membrane bioreactor: low abundance but important roles. Chemosphere. 195, 108–118 (2018).

  • 6.

    Widder, S. et al. Challenges in Microbial Ecology: Building Predictive Understanding of Community Function and Dynamics. ISME J. 10, 2557–2568 (2016).

  • 7.

    Calusinska, M. et al. A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnol. Biofuels. 11, 196 (2018).

  • 8.

    Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183 (2019).

  • 9.

    Abzazou, T. et al. Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach. Sci. Total Environ. 618, 858–865 (2018).

  • 10.

    Huo, Y., Bai, Y. & Qu, J. Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Appl. Microbiol. Biotechnol. 101, 6755–6764 (2017).

  • 11.

    Meerbergen, K. et al. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. Microbiologyopen. 6, e00413 (2016).

  • 12.

    Xia, S. et al. Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ. Sci. Technol. 44, 1043–1045 (2010).

  • 13.

    Zhang, T., Shao, M. F. & Ye, L. 454-Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6, 1137–1147 (2012).

  • 14.

    Numberger, D. et al. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci. Rep. 9, 9673 (2019).

  • 15.

    Johnson, D. R. et al. Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. Appl. Environ. Microb. 81, 666–675 (2015).

  • 16.

    Arregui, L. et al. Analysis of the usefulness of biological parameters for the control of activated sludge wastewater treatment plants in an interlaboratory study context. J. Environ. Monit. 14, 1444–1452 (2012).

  • 17.

    Madoni, P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge based on the microfauna analysis. Water Res. 28, 67–75 (1994).

  • 18.

    Pedrazzani, R., Menoni, L., Nembrini, S., Manili, L. & Bertanza, G. Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: The case of piggery slaughterhouse wastewater. J. Ind. Microbiol. Biotechnol. 43, 953–964 (2016).

  • 19.

    Cydzik-Kwiatkowska, A. & Zielińska, M. Bacterial communities in full-scale wastewater treatment systems. World J. Microbiol. Biotechnol. 32, 66 (2016).

  • 20.

    Ju, F., Guo, F., Ye, L., Xia, Y. & Zhang, T. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ. Microbiol. Rep. 6, 80–89 (2013).

  • 21.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

  • 22.

    Parnell, J. J., Denef, V. J., Park, J., Tsoi, T. & Tiedje, J. M. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 21, 147–156 (2010).

  • 23.

    Pujalte, M. J., Lucena, T., Ruvira, M. A., Arahal, D. R. & Macián, M. C. The family Rhodobacteraceae, In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 4th Edn, eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F. L. (Berlin: Springer), 439–512 (2014).

  • 24.

    Oh, S., Choi, D. & Cha, C. J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci. Rep. 9, 4958 (2019).

  • 25.

    Xia, Y., Kong, Y. H., Thomsen, T. R. & Nielsen, P. H. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae (Candidatus epiflobacter spp.) in activated sludge. Appl. Environ. Microbiol. 74, 2229–2238 (2008).

  • 26.

    Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).

  • 27.

    Valentin-Vargas, A., Toro-Labrador, G. & Massol-Deya, A. A. Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance. Plos One. 7, e42524 (2012).

  • 28.

    Griffin, J. S. & Wells, G. F. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly. ISME J. 11, 500–511 (2016).

  • 29.

    Ren, T.-T., Yu, H.-Q. & Li, X.-Y. The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation. Appl. Microbiol. Biotechnol. 88, 789–797 (2010).

  • 30.

    Lade, H., Paul, D. & Kweon, J. H. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Int. J. Mol. Sci. 15, 2255–2273 (2014).

  • 31.

    Kellogg, C. A., Ross, S. W. & Brooke, S. D. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ. 4, e2529 (2016).

  • 32.

    Zhang, Z. & Liu, S. Insight into the overconsumption of ammonium by anammox consortia under anaerobic conditions. J. Appl. Microbiol. 117, 1830–1838 (2014).

  • 33.

    Leal, A. L. et al. Implementation of the sludge biotic index in a petrochemical WWTP in Brazil: improving operational control with traditional methods. J. Ind. Microbiol. Biotechnol. 40, 1415–1422 (2013).

  • 34.

    Saikaly, P. E. & Oerther, D. B. Diversity of dominant bacterial taxa in activated sludge promotes functional resistance following toxic shock loading. Microb. Ecol. 61, 557–567 (2011).

  • 35.

    Zhang, B., Xu, X. Y. & Zhu, L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci. Rep. 7, 11 (2017).

  • 36.

    Miura, Y., Watanabe, Y. & Okabe, S. Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation. Environ.Sci. Technol. 41, 632–638 (2007).

  • 37.

    Liébana, R. et al. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling. Biofouling. 31, 71–82 (2015).

  • 38.

    Feld, L., Nielsen, T. K., Hansen, L. H., Aamand, J. & Albers, C. N. Establishment of bacterial herbicide degraders in a rapid sand filter for bioremediation of phenoxypropionate-polluted groundwater. Appl. Environ. Microbiol. 82, 878–887 (2016).

  • 39.

    Albers, C. N., Ellegaard-Jensen, L., Hansen, L. H. & Sørensen, S. R. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater. Water Res. 129, 1–10 (2018).

  • 40.

    Becares, A. A. & Fernandez, A. F. Microbiome based identification, monitoring and enhancement of fermentation processes and products. 15/779,531, US Patent App. 15/779,531 (2018).

  • 41.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

  • 42.

    Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000Research. 5, 1492 (2016).

  • 43.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).

  • 44.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 8, e61217 (2013).

  • 45.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5 https://CRAN.R-project.org/package=vegan (2019).

  • 46.

    Simpson, E. H. Measurement of diversity. Nature 163, 668 (1949).

  • 47.

    Bray, R. J. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    • Article
    • Google Scholar
  • 48.

    McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, 1003531 (2014).

  • 49.

    Wemheuer, F. et al. Tax4Fun2: a R-based tool for the rapid prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene marker gene sequences. bioRxiv 490037 (2018).

  • 50.

    Johnston, J., Lapara, T. & Behrens, S. Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure. Sci. Rep. 9, 4565 (2019).

  • 51.

    Fang, H. et al. Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environ. Pollut. 243, 1206–1216 (2018).

  • 52.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).


  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps