in

Latitudinal consistency of biomass size spectra – benthic resilience despite environmental, taxonomic and functional trait variability

  • 1.

    Bonner, J. T. Why size matters. From bacteria to blue whales. (Princeton University Press, 2006).

  • 2.

    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evolutionary Ecology Research 10, 251–268 (2008).

    • Google Scholar
  • 3.

    Norkko, A., Villnäs, A., Norkko, J., Valanko, S. & Pilditch, C. Size matters: implications of the loss of large individuals for ecosystem function. Scientific reports 3, 2646 (2013).

  • 4.

    Sheldon, R. W., Prakash, A. & Sutcliffe, W. H. The size distribution of particles in the ocean. Limnology and Oceanography 17, 327–340 (1972).

  • 5.

    Platt, T. & Denman, K. The structure of pelagic marine ecosystems. Rapports et Proces-Verbaux des Reunions, Conseil International pour L’Exploration scientifique de la Mer 173, 60–65 (1978).

    • Google Scholar
  • 6.

    Quiroga, E. et al. Seasonal benthic patterns in a glacial Patagonian fjord: the role of suspended sediment and terrestrial organic matter. Marine Ecology Progress Series 561, 31–50 (2016).

  • 7.

    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends in Ecology & Evolution 32, 174–186 (2017).

    • Article
    • Google Scholar
  • 8.

    Yool, A. et al. Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. Global Change Biology 23, 3554–3566 (2017).

  • 9.

    Sprules, W. G. & Goyke, A. P. Size-based structure and production in the pelagia of lakes Ontario and Michigan. Canadian Journal of Fisheries and Aquatic Sciences 51, 2603–2611 (1994).

    • Article
    • Google Scholar
  • 10.

    Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing? ICES Journal of Marine Science 62, 177–188 (2005).

    • Article
    • Google Scholar
  • 11.

    Schwinghamer, P. Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Sciences 38, 1255–1263 (1981).

    • Article
    • Google Scholar
  • 12.

    Warwick, R. M. & Clarke, K. R. Species size distributions in marine benthic communities. Oecologia 61, 32–41 (1984).

  • 13.

    Akoumianaki, I., Papaspyrou, S. & Nicolaidou, A. Dynamics of macrofaunal body size in a deltaic environment. Marine Ecology Progress Series 321, 55–66 (2006).

  • 14.

    Górska, B. & Włodarska-Kowalczuk, M. Food and disturbance effects on Arctic benthic biomass and production size spectra. Progress in Oceanography 152, 50–61 (2017).

  • 15.

    Platt, T. & Denman, K. Organisation in the pelagic ecosystem. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 575–581 (1977).

  • 16.

    Sprules, W. G. & Barth, L. E. Surfing the biomass size spectrum: some remarks on history, theory, and application. Canadian Journal of Fisheries and Aquatic Sciences 73, 477–495 (2016).

    • Article
    • Google Scholar
  • 17.

    Rodriguez, J. & Mullin, M. M. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnology and Oceanography 31, 361–370 (1986).

  • 18.

    Sprules, W. G. & Munawar, M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Canadian Journal of Fisheries and Aquatic Sciences 43, 1789–1794 (1986).

    • Article
    • Google Scholar
  • 19.

    del Giorgio, P. A. & Gasol, J. M. Biomass distribution in freshwater plankton communities. The American Naturalist 146, 135–152 (1995).

    • Article
    • Google Scholar
  • 20.

    Trebilco, R., Baum, J. K., Salomon, A. K. & Dulvy, N. K. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends in Ecology and Evolution 28, 423–431 (2013).

  • 21.

    Rex, M. A. Structure in Community the Deep-Sea Benthos. Annual Review of Ecology and Systematics 12, 331–353 (1981).

    • Google Scholar
  • 22.

    Quiroga, E. et al. Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuarine, Coastal and Shelf Science 62, 217–231 (2005).

  • 23.

    Dossena, M. et al. Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences 279, 3011–3019 (2012).

  • 24.

    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nature Climate Change 1, 401–406 (2011).

  • 25.

    Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences 106, 8123–8127 (2009).

  • 26.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends in ecology & evolution 26, 285–91 (2011).

    • Article
    • Google Scholar
  • 27.

    Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, https://doi.org/10.1016/0003-6870(73)90259-7 (Vandenhoeck und Ruprecht, 1847).

  • 28.

    Atkinson, D. Temperature and organism size – a biological law for ectotherms? Advances in ecological research 25, 1–58 (1994).

    • Article
    • Google Scholar
  • 29.

    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12, 235–239 (1997).

  • 30.

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change 3, 254–258 (2013).

  • 31.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12788–12793 (2009).

  • 32.

    Kraft, A. et al. First evidence of reproductive success in a southern invader indicates possible community shifts among Arctic zooplankton. Marine Ecology Progress Series 493, 291–296 (2013).

  • 33.

    Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Global Change Biology 17, 1681–1694 (2011).

  • 34.

    Heneghan, R. F., Hatton, I. A. & Galbraith, E. D. Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerging Topics in Life Sciences 3, 233–243 (2019).

  • 35.

    Clarke, K. R. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation, 2nd Edition. (Plymouth Marine Laboratory, 2001).

  • 36.

    IPCC. Climate change 2013. The physical science basis. Climate Change 2013 – The Physical Science Basis, https://doi.org/10.1017/CBO9781107415324 (Cambridge University Press, 2013).

    • Google Scholar
  • 37.

    Hua, E. et al. Pattern of benthic biomass size spectra from shallow waters in the East China Seas. Marine Biology 160, 1723–1736 (2013).

    • Article
    • Google Scholar
  • 38.

    Saiz-Salinas, J. I. & Ramos, A. Biomass size-spectra of macrobenthic assemblages along water depth in Antarctica. Marine Ecology Progress Series 178, 221–227 (1999).

  • 39.

    de Bruyn, A. M., Marcogliese, D. J. & Rasmussen, J. B. Altered body size distributions in a large river fish community enriched by sewage. Canadian Journal of Fisheries and Aquatic Sciences 59, 819–828 (2002).

    • Article
    • Google Scholar
  • 40.

    Duplisea, D. E. & Drgas, A. Sensitivity of a benthic, metazoan, biomass size spectrum to differences in sediment granulometry. Marine Ecology Progress Series 177, 73–81 (1999).

  • 41.

    Schwinghamer, P. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Marine Ecology Progress Series 13, 151–166 (1983).

  • 42.

    Mazurkiewicz, M. et al. Seasonal constancy (summer vs. winter) of benthic size spectra in an Arctic fjord. Polar Biology 42, 1255–1270, https://doi.org/10.1007/s00300-019-02515-2 (2019).

    • Article
    • Google Scholar
  • 43.

    Sprules, W. G. Ecological change in Great Lakes communities — a matter of perspective. Canadian Journal of Fisheries and Aquatic Sciences 65, 1–9 (2008).

    • Article
    • Google Scholar
  • 44.

    Warwick, R. M. & Joint, J. R. The size distribution of organismsin the Celtic Sea: from bacteria to metazoa. Oecologia 73, 185–191 (1987).

  • 45.

    Beaugrand, G. Plankton biodiversity and biogeography. In Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy (eds. Castellani, C. & Edwards, M.) 12–23, https://doi.org/10.1007/978-94-007-5784-4 (Oxford University Press, 2017).

  • 46.

    Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Global Change Biology 25, 2544–2559 (2019).

  • 47.

    Brattegard, T. & Holthe, T. Distribution of marine, benthic macro-organisms in Norway: A tabulated catalogue. Preliminary edition. Research Report for DN, 1997(1). (Direktoratet for naturforvaltning, 1997).

  • 48.

    Włodarska-Kowalczuk, M., Renaud, P. E., Węsławski, J. M., Cochrane, S. K. J. & Denisenko, S. G. Species diversity, functional complexity and rarity in Arctic fjordic versus open shelf benthic systems. Marine Ecology Progress Series 463, 73–87 (2012).

  • 49.

    Çinar, M. E. Alien polychaete species worldwide: Current status and their impacts. Journal of the Marine Biological Association of the United Kingdom 93, 1257–1278 (2013).

    • Article
    • Google Scholar
  • 50.

    Levin, L. A. Interference interactions among tube-dwelling polychaetes in a dense infaunal assemblage. Journal of Experimental Marine Biology and Ecology 65, 107–119 (1982).

    • Article
    • Google Scholar
  • 51.

    Soltwedel, T., Mokievsky, V. & Schewe, I. Benthic activity and biomass on the Yermak Plateau and in adjacent deep-sea regions northwest of Svalbard. Deep-Sea Research Part I: Oceanographic Research Papers 47, 1761–1785 (2000).

  • 52.

    Quiroga, E. et al. Organic enrichment and structure of macrobenthic communities in the glacial Baker Fjord, Northern Patagonia, Chile. Journal of the Marine Biological Association of the United Kingdom 92, 73–83 (2012).

  • 53.

    Ambrose, W. G. & Renaud, P. E. Benthic response to water column productivity patterns: evidence for benthic-pelagic coupling in the Northeast Water Polynya. Journal of Geophysical Research 100, 4411–4421 (1995).

  • 54.

    Zaborska, A. et al. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords – Signs of maturing of Arctic fjordic systems? Journal of Marine Systems 180, 112–123 (2018).

  • 55.

    de la Vega, C., Jeffreys, R. M., Tuerena, R., Ganeshram, R. & Mahaffey, C. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies. Global Change Biology 25, 4116–4130 (2019).

  • 56.

    Włodarska‐Kowalczuk, M. et al. Organic Carbon Origin, Benthic Faunal Consumption, and Burial in Sediments of Northern Atlantic and Arctic Fjords (60–81°N). Journal of Geophysical Research: Biogeosciences 124, 3737–3751 (2019).

    • ADS
    • Google Scholar
  • 57.

    Renaud, P. E., Løkken, T. S., Jørgensen, L. L., Berge, J. & Johnson, B. J. Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Frontiers in Marine Science 2, 1–15 (2015).

    • Article
    • Google Scholar
  • 58.

    Guiet, J., Poggiale, J. C. & Maury, O. Modelling the community size-spectrum: recent developments and new directions. Ecological Modelling 337, 4–14 (2016).

    • Article
    • Google Scholar
  • 59.

    Gerlach, S. A. On the importance of marine meiofauna for benthos communities. Oecologia 6, 176–190 (1971).

  • 60.

    Sheldon, R. W., Sutcliffe, W. H. Jr. & Paranjape, M. A. Structure of pelagic food chain and relationship between plankton and fish production. Journal of the Fisheries Research Board of Canada 34, 2344–2353 (1977).

    • Article
    • Google Scholar
  • 61.

    Van Oevelen, D. et al. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep-Sea Research Part I: Oceanographic Research Papers 58, 1069–1083 (2011).

  • 62.

    Timofeev, S. F. Bergmann’s principle and deep-water gigantism in marine crustaceans. Biology Bulletin 28, 646–650 (2001).

    • Article
    • Google Scholar
  • 63.

    Leinaas, H. P., Jalal, M., Gabrielsen, T. M. & Hessen, D. O. Inter- and intraspecific variation in body- and genome size in calanoid copepods from temperate and arctic waters. Ecology and Evolution 6, 5585–5595 (2016).

  • 64.

    Cushman, J. H., Lawton, J. H. & Manly, B. F. J. Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95, 30–37 (1993).

  • 65.

    Reading, C. J. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151, 125–131 (2007).

  • 66.

    Ortega, L., Celentano, E., Delgado, E. & Defeo, O. Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Marine Ecology Progress Series 545, 203–213 (2016).

  • 67.

    Hunt, G. & Roy, K. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences of the United States of America 103, 1347–52 (2006).

  • 68.

    Matosin, N., Frank, E., Engel, M., Lum, J. S. & Newell, K. A. Negativity towards negative results: a discussion of the disconnect between scientific worth and scientific culture. Disease Models & Mechanisms 7, 171–173 (2014).

    • Article
    • Google Scholar
  • 69.

    Nissen, S. B., Magidson, T., Gross, K. & Bergstrom, C. T. Publication bias and the canonization of false facts. eLife 5, e21451 (2016).

  • 70.

    Hawkins, B. A. & Lawton, J. H. Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia 102, 31–36 (1995).

  • 71.

    ACIA. Arctic cimate impact assessment – scientific report. (Cambridge University Press, 2005).

  • 72.

    Falk-Petersen, J., Renaud, P. & Anisimova, N. Establishment and ecosystem effects of the alien invasive red king crab (Paralithodes camtschaticus) in the Barents Sea–a review. ICES Journal of Marine Science: Journal du Conseil 68, 479–488 (2011).

    • Article
    • Google Scholar
  • 73.

    Mazurkiewicz, M., Górska, B., Jankowska, E. & Włodarska-Kowalczuk, M. Assessment of nematode biomass in marine sediments: A semi-automated image analysis method. Limnology and Oceanography: Methods 14, 816–827 (2016).

    • Google Scholar
  • 74.

    Feller, R. J. & Warwick, R. M. Energetics. in Introduction to the Study of Meiofauna. (eds. Higgins, R. P. & Thiel, H.) 181–196 (Smithsonian Institution Press, 1988).

  • 75.

    Górska, B., Gromisz, S. & Włodarska-Kowalczuk, M. Size assessment in polychaete worms-application of morphometric correlations for common North Atlantic taxa. Limnology and Oceanography: Methods 17, 254–265 (2019).

    • Google Scholar
  • 76.

    Andrassy, I. The determination of volume and weight of nematodes. Acta Zoologica Academiae Scientiarum Hungaricae 2, 1–15 (1956).

    • Google Scholar
  • 77.

    Berestovsky, E. G. et al. Зависимость между размерами и массой тела некоторых беспозвоночных и рыб северо-восточной Атлантики (The relationship between the size and weight of some invertebrates and fish the North-East Atlantic). (Publishing House of the KSC of the USSR Academy of Sciences, 1989).

  • 78.

    Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms-A global data bank of relationships between mass, elemental composition and energy content. Journal of Sea Research 64, 334–340 (2010).

  • 79.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA for PRIMER: guide to software and statistical methods. (PRIMER-E Ltd, 2008).

  • 80.

    Fauchald, K. & Jumars, P. A. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology, Annual Review 17, 193–284 (1979).

    • Google Scholar
  • 81.

    Macdonald, T. A., Burd, B. J., Macdonald, V. I., van Roodselaar, A. & Road, W. S. Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia., https://doi.org/10.1002/prot.20320 (Canadian Technical Report of Fisheries and Aquatic Sciences 2874, 2010).

  • 82.

    Feder, H. M., Matheke, G. E. M. Subtidal benthos. in Port Valdez, Alaska: Environmental Studies 1976-1979 (eds. Colonell, J. M. & Stockholm, H.) 235–318. (Institute of Marine Science, University of Alaska, 1980).

  • 83.

    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial. (PRIMER-E Ltd, 2015).

  • 84.

    Lenth, R. Emmeans: estimated marginal means, aka least-squares means. R package version 1.1. Available at: https://cran.r-project.org/package=emmeans (2018).

  • 85.

    R Core Team. R: A language and environment for statistical computing. (2019).


  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps