in

Socio-ecological connectivity differs in magnitude and direction across urban landscapes

  • 1.

    Grimm, N. B. et al. Global change and the ecology of cities. Science (80-.). 319, 756–760 (2008).

  • 2.

    UN, D. World urbanization prospects: The 2014 revision. United Nations Dep. Econ. Soc. Aff. Popul. Div. New York, NY, USA (2015).

  • 3.

    UN-Habitat. World Cities Report 2016: Urbanization and Development: Emerging Futures. International Journal (United Nations Human Settlements Programme (UN-Habitat), https://doi.org/10.1016/S0264-2751(03)00010-6 (2016).

    • Article
    • Google Scholar
  • 4.

    Mckenzie, K. Urbanization, Social Capital and Mental Health. Glob. Soc. Policy 8, 359–377 (2008).

    • Article
    • Google Scholar
  • 5.

    Alberti, M. Maintaining ecological integrity and sustaining ecosystem function in urban areas. Curr. Opin. Environ. Sustain. 2, 178–184 (2010).

    • Article
    • Google Scholar
  • 6.

    Pickett, S. T. A. et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).

    • Article
    • Google Scholar
  • 7.

    Alberti, M. et al. Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53, 1169–1179 (2003).

    • Article
    • Google Scholar
  • 8.

    Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry? Trends Ecol. Evol. 21, 192–199 (2006).

  • 9.

    Bolund, P. & Hunhammer, S. Ecosystem services in urban areas. Ecol. Econ. 29, 293–301 (1999).

    • Article
    • Google Scholar
  • 10.

    Watson, R. T. et al. Ecosystems and human well-being. Ecosystems 5, (World Resources Institute, 2005).

  • 11.

    Allen, J., Balfour, R., Bell, R. & Marmot, M. Social determinants of mental health. Int. Rev. Psychiatry 26, 392–407 (2014).

  • 12.

    Cadenasso, M. L., Pickett, S. T. A. & Grove, J. M. Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol. Complex. 3, 1–12 (2006).

    • Article
    • Google Scholar
  • 13.

    Swyngedouw, E. & Heynen, N. Urban political ecology, justice and the politics of scale. Antipode 35, 898–918 (2003).

    • Article
    • Google Scholar
  • 14.

    Heynen, N., Perkins, H. A. & Roy, P. The political ecology of uneven urban green space: the impact of political economy on race and ethnicity in producing environmental inquality in MIlwaukee. Urban Aff. Rev. 42, 3–25 (2006).

    • Article
    • Google Scholar
  • 15.

    Gerrish, E. & Watkins, S. L. The relationship between urban forests and income: A meta-analysis. Landsc. Urban Plan. 170, 293–308 (2018).

  • 16.

    McDonald, R. I. Ecosystem service demand and supply along the urban-to-rural gradient. J. Conserv. Plan. 5, 1–14 (2009).

    • Google Scholar
  • 17.

    Wiggering, H., Müller, K., Werner, A. & Helming, K. The Concept of Multifunctionality in Sustainable Land Development. In Sustainable Development of Multifunctional Landscapes 3–18, https://doi.org/10.1007/978-3-662-05240-2_1 (Springer Berlin Heidelberg, 2003).

    • Google Scholar
  • 18.

    Bastian, O., Grunewald, K. & Syrbe, R.-U. Space and time aspects of ecosystem services, using the example of the EU Water Framework Directive. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 5–16 (2012).

    • Article
    • Google Scholar
  • 19.

    Dobbs, C., Kendal, D. & Nitschke, C. R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 43 (2014).

  • 20.

    Turner, M. G., Donato, D. C. & Romme, W. H. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc. Ecol. 28, 1081–1097 (2013).

    • Article
    • Google Scholar
  • 21.

    Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).

    • Article
    • Google Scholar
  • 22.

    Biggs, R. et al. Toward Principles for Enhancing the Resilience of Ecosystem Services. Annu. Rev. Environ. Resour. 37, 421–48 (2012).

    • Article
    • Google Scholar
  • 23.

    Bodin, Ö. & Prell, C. Social network analysis in natural resource governance: summary and outlook. in Social Networks and Natural Resource Management: uncovering the Social Fabric of Environmental Governance (eds. Bodin, Ö. & Prell, C.) 1 (Cambridge University Press, 2011).

  • 24.

    Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. Connectivity is a vital element of landscape structure. Oikos 68, 571–573 (1993).

    • Article
    • Google Scholar
  • 25.

    Lin, N. Building a Network Theory of Social Capital. Connections 22, 28–51 (1999).

    • Google Scholar
  • 26.

    Berkman, L. F., Glass, T., Brissette, I. & Seeman, T. E. From social integration to health: Durkheim in the new millennium. Soc. Sci. Med. 51, 843–57 (2000).

  • 27.

    Berkman, L. F. & Glass, T. Social integration, social networks, social support, and health. Soc. Epidemiol. 1, 137–173 (2000).

    • Google Scholar
  • 28.

    Saldivar-Tanaka, L. & Krasny, M. E. Culturing community development, neighborhood open space, and civic agriculture: The case of Latino community gardens in New York City. Agric. Human Values 21, 399–412 (2004).

    • Article
    • Google Scholar
  • 29.

    Romolini, M., Dalton, S. E. & Grove, J. M. Stewardship Networks and the Evolution of Environmental Governance for the Sustainable City. Sci. Sustain. City Empir. Insights from Balt. Sch. Urban Ecol. 72 (2019).

  • 30.

    Ossola, A., Locke, D., Lin, B. & Minor, E. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 7 (2019).

  • 31.

    Braaker, S., Obrist, M. K., Ghazoul, J. & Moretti, M. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J. Anim. Ecol. 0–2, https://doi.org/10.1111/ijlh.12426 (2017).

  • 32.

    Dakos, V. et al. Principle 2–manage connectivity. R. Biggs O., M. Schlüter, ML Schoon, Ed. Princ. Build. Resil. Sustain. Ecosyst. Serv. Soc. Syst. Cambridge Univ. Press. Cambridge, UK 80–104 (2015).

  • 33.

    Baggio, J. A. et al. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proc. Natl. Acad. Sci. USA 113, 13708–13713 (2016).

  • 34.

    Albrecht, G. ‘Solastalgia’. A New Concept in Health and Identity. PAN Philos. Act. Nat. 41 (2005).

  • 35.

    World Health Organization. Hidden cities: unmasking and overcoming health inequities in urban settings. (Word Health Organization, Centre for Health Development, 2010).

  • 36.

    Douglas, I. Urban ecology and urban ecosystems: understanding the links to human health and well-being. Curr. Opin. Environ. Sustain. 4, 385–392 (2012).

    • Article
    • Google Scholar
  • 37.

    Walker, B. et al. Resilience management in social-ecological systems: a working hypothesis for a participatory approach. Conserv. Ecol. 6, 14 (2002).

    • Article
    • Google Scholar
  • 38.

    LaPoint, S., Balkenhol, N., Hale, J., Sadler, J. & van der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 29 (2015).

  • 39.

    Botequilha Leitão, A. & Ahern, J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc. Urban Plan. 59, 65–93 (2002).

    • Article
    • Google Scholar
  • 40.

    Termorshuizen, J. W. & Opdam, P. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 24, 1037–1052 (2009).

    • Article
    • Google Scholar
  • 41.

    Wu, J. Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 28, 999–1023 (2013).

    • Article
    • Google Scholar
  • 42.

    Childers, D. L. et al. An Ecology for Cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability 7, 3774–3791 (2015).

    • Article
    • Google Scholar
  • 43.

    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    • Article
    • Google Scholar
  • 44.

    Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H. & Gaston, K. J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 3, 390–394 (2007).

  • 45.

    Okvat, H. A. & Zautra, A. J. Community gardening: a parsimonious path to individual, community, and environmental resilience. Am. J. Community Psychol. 47, 374–387 (2011).

  • 46.

    Mitchell, R. & Popham, F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372, 1655–1660 (2008).

  • 47.

    Agustina, I. & Beilin, R. Community gardens: space for interactions and adaptations. Procedia Soc. Behav. Sci. 36, 439–448 (2012).

    • Article
    • Google Scholar
  • 48.

    Brose, U., Hillebrand, H. & Brose, U. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–9 (2016).

    • Article
    • Google Scholar
  • 49.

    Lyytimaki, J. & Faehnle, M. Hopping on one leg – The challenge of ecosystem disservices for urban green management. Urban For. Urban Green., https://doi.org/10.1016/j.ufug.2009.09.003 (2009).

    • Article
    • Google Scholar
  • 50.

    Andersson, E. Urban Landscapes and Sustainable Cities. Ecol. Soc. 11, art34 (2006).

    • Article
    • Google Scholar
  • 51.

    Lovell, S. T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2, 2499–2522 (2010).

    • Article
    • Google Scholar
  • 52.

    Guitart, D., Pickering, C. & Byrne, J. Past results and future directions in urban community gardens research. Urban For. Urban Green. 11, 364–373 (2012).

    • Article
    • Google Scholar
  • 53.

    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).

  • 54.

    Speak, A. F., Mizgajski, A. & Borysiak, J. Allotment gardens and parks: Provision of ecosystem services with an emphasis on biodiversity. Urban For. Urban Green. 14, 772–781 (2015).

    • Article
    • Google Scholar
  • 55.

    Lin, B. B. et al. Local- and landscape-scale land cover affects microclimate and water use in urban gardens. Sci. Total Environ. 610–611, 570–575 (2018).

  • 56.

    Piacentini, R. D. et al. Monitoring the climate change impacts of urban agriculture in Rosario, Argentina. Urban Agriculture Magazine 50–53 (2014).

  • 57.

    Armstrong, D. A survey of community gardens in upstate New York: implications for health promotion and community development. Health Place 6, 319–327 (2000).

  • 58.

    Algert, S. J., Baameur, A. & Renvall, M. J. Vegetable output and cost savings of community gardens in San Jose, California. J. Acad. Nutr. Diet. 114, 1072–1076 (2014).

  • 59.

    Gichunge, C. & Kidwaro, F. Utamu wa Afrika (the sweet taste of Africa): The vegetable garden as part of resettled African refugees’ food environment. Nutr. Diet. 71, 270–275 (2014).

    • Article
    • Google Scholar
  • 60.

    Borrero, N., Lee, D. S. & Padilla, A. M. Developing a Culture of Resilience for Low-Income Immigrant Youth. Urban Rev. 45, 99–116 (2013).

    • Article
    • Google Scholar
  • 61.

    Barthel, S., Parker, J. & Ernstson, H. Food and Green Space in Cities: A Resilience Lens on Gardens and Urban Environmental Movements. Urban Stud. J. Ltd. 52, 1–18 (2013).

    • Google Scholar
  • 62.

    Tidball, K. G. & Krasny, M. E. From risk to resilience: What role for community greening and civic ecology in cities. Soc. Learn. Towar. a more Sustain. world 149–164 (2007).

  • 63.

    Cretney, R. Resilience for whom? Emerging critical geographies of socio-ecological resilience. Geogr. Compass 8, 627–640 (2014).

    • Article
    • Google Scholar
  • 64.

    Camps-Calvet, M., Langemeyer, J., Calvet-Mir, L. & Gómez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Policy 62 (2015).

  • 65.

    Dubbeling, M. Integrating urban agriculture and forestry into climate change action plans: Lessons from Western Province, Sri Lanka and Rosario, Argentina. RUAF Found. Argentina (2015).

  • 66.

    Teig, E. et al. Collective efficacy in Denver, Colorado: Strengthening neighborhoods and health through community gardens. Health Place 15, 1115–1122 (2009).

  • 67.

    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).

  • 68.

    Torres, A. C., Prévot, A. C. & Nadot, S. Small but powerful: The importance of French community gardens for residents. Landsc. Urban Plan. 180, 5–14 (2018).

    • Article
    • Google Scholar
  • 69.

    Taylor, J. R. & Lovell, S. T. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landsc. Urban Plan. 108, 57–70 (2012).

    • Article
    • Google Scholar
  • 70.

    Mack, E. A., Tong, D. & Credit, K. Gardening in the desert: a spatial optimization approach to locating gardens in rapidly expanding urban environments. Int. J. Health Geogr. 16, 37 (2017).

  • 71.

    Siegner, A., Sowerwine, J. & Acey, C. Does urban agriculture improve food security? Examining the nexus of food access and distribution of urban produced foods in the United States: A systematic review. Sustainability 10, 8–12 (2018).

    • Article
    • Google Scholar
  • 72.

    Clarke, M., Davidson, M., Egerer, M., Anderson, E. & Fouch, N. The underutilized role of community gardens in improving cities’ adaptation to climate change: a review. People, Place and Policy 12, 241–251 (2019).

    • Google Scholar
  • 73.

    Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. Enhancing landscape connectivity through multi-functional green infrastructure corridor modeling and design. Urban For. Urban Green., https://doi.org/10.1016/J.UFUG.2018.10.014 (2018).

    • Article
    • Google Scholar
  • 74.

    City of Chicago Department of Planning and Development. Chicago: Eat Local Live Healthy. Chicago: Eat Local Live Healthy (2007).

  • 75.

    Baltimore City Planning Commission. Homegrown Baltimore: Grow Local. (2013).

  • 76.

    The City of New York. One New York: The Plan for a Strong and Just City. (2015).

  • 77.

    Tremblay, M. A. & Clair, C. C. St Permeability of a heterogeneous urban landscape to the movements of forest songbirds. J. Appl. Ecol. 48, 679–688 (2011).

    • Article
    • Google Scholar
  • 78.

    Mörtberg, U. M. Resident bird species in urban forest remnants; landscape and habitat perspectives. Landsc. Ecol. 16, 193–203 (2001).

    • Article
    • Google Scholar
  • 79.

    McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology. evolution, and conservation. Ecology 89, 2712–2724 (2008).

  • 80.

    McDonnell, M. J. & Hahs, A. K. Adaptation and Adaptedness of Organisms to Urban Environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).

    • Article
    • Google Scholar
  • 81.

    Zhou, W., Pickett, S. T. A. & Cadenasso, M. L. Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landsc. Ecol. 32, 15–30 (2017).

    • Article
    • Google Scholar
  • 82.

    Getis, A. & Ord, J. K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 24, 189–206 (1992).

    • Article
    • Google Scholar
  • 83.

    Pelletier, D. et al. Applying Circuit Theory for Corridor Expansion and Management at Regional Scales: Tiling, Pinch Points, and Omnidirectional Connectivity. PLoS One 9, e84135 (2014).

  • 84.

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

  • 85.

    Gobster, P. H. & Hull, R. B. Restoring Nature: Perspectives from the Social Sciences and Humanities. (Island Press, 2000).

  • 86.

    Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conservation Biology, https://doi.org/10.1111/cobi.13193 (2018).

  • 87.

    Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159, 1974–1983 (2011).

  • 88.

    Shekhar, S., Evans, M. R., Kang, J. M. & Mohan, P. Identifying patterns in spatial information: A survey of methods. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 193–214 (2011).

    • Article
    • Google Scholar
  • 89.

    Gobster, P. H. Visions of nature: conflict and compatibility in urban park restoration. Landsc. Urban Plan. 56, 35–51 (2001).

    • Article
    • Google Scholar
  • 90.

    Mcphearson, T., Kremer, P. & Hamstead, Z. A. Mapping ecosystem services in New York City: Applying a social-ecological approach in urban vacant land. Ecosyst. Serv. 5, 11–26 (2013).

    • Article
    • Google Scholar
  • 91.

    Zipperer, W. C., Wu, J., Pouyat, R. V. & Pickett, S. T. A. The application of ecological principles to urban and urbanizing landscapes. Ecol. Appl. 10, 685–688 (2000).

    • Article
    • Google Scholar
  • 92.

    Carroll, C., McRae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in Western North America. Conserv. Biol. 26, 78–87 (2012).

  • 93.

    Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81, 167–178 (2007).

    • Article
    • Google Scholar
  • 94.

    McRae, B. H. Isolation by resistance. Evolution (N. Y). 60, 1551–1561 (2006).

    • Google Scholar
  • 95.

    Pascual-Hortal, L. & Saura, S. Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity. Landsc. Urban Plan. 83, 176–186 (2007).

    • Article
    • Google Scholar
  • 96.

    Wagner, H. H. & Fortin, M.-J. Spatial analysis of landscapes: concepts and statistics. Ecology 86, 1975–1987 (2005).

    • Article
    • Google Scholar
  • 97.

    Theobald, D. M., Reed, S. E., Fields, K. & Soulé, M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv. Lett. 5, 123–133 (2012).

    • Article
    • Google Scholar
  • 98.

    Urban, D. & Keitt, T. Landscape Connectivity: A graph theory perspective. Ecology 82, 1205–1218 (2001).

    • Article
    • Google Scholar
  • 99.

    Doyle, P. Random walks and electric networks. Math. Assoc. Am. (1984).

  • 100.

    Anderson, E. C., Egerer, M. H., Fouch, N., Clarke, M. & Davidson, M. J. Comparing community garden typologies of Baltimore, Chicago, and New York City (USA) to understand potential implications for socio-ecological services. Urban Ecosyst. 1–11 (2019).

  • 101.

    Leonard, P. B. et al. Landscape connectivity losses due to sea level rise and land use change. Anim. Conserv. 20, 80–90 (2017).

    • Article
    • Google Scholar
  • 102.

    Sutherland, R. W. Terrestrial habitat connectivity models for the South African Landscape Conservation Cooperative. (2014).

  • 103.

    Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 81, 345–354 (2015).

    • Google Scholar
  • 104.

    University of Vermont. GIS Data at UVM. UVM Spatial Analysis Lab (2017). Available at: http://www.uvm.edu/~gis/. (Accessed: 14th February 2019).

  • 105.

    Neo, H. & Chua, C. Y. Beyond inclusion and exclusion: community gardens as spaces of responsibility. Ann. Am. Assoc. Geogr. 107, 666–681 (2017).

    • Google Scholar
  • 106.

    Egerer, M. & Fairbairn, M. Gated gardens: Effects of urbanization on community formation and commons management in community gardens. Geoforum 96, 61–69 (2018).

    • Article
    • Google Scholar
  • 107.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.42.1. (2018). Available at: https://cran.r-project.org/package=MuMIn. (Accessed: 10th July 2019).

  • 108.

    Rastogi, S., Johnson, T. D., Hoeffel, E. M. & Drewery, M. P. The Black Population: 2010 2010 Census Briefs. (2010).

  • 109.

    Leonard, P. B. et al. GFLOW: software for modelling circuit theory-based connectivity at any scale. Methods Ecol. Evol. 8, 519–526 (2016).

    • Article
    • Google Scholar
  • 110.

    Dickson, B. G. et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol., https://doi.org/10.1111/cobi.13230 (2018).

  • 111.

    ESRI. ArcGIS desktop: release 10. Environmental Systems Research Institute (2011).

  • 112.

    O’Sullivan, S. & Morrall, J. Walking Distances to and from Light-Rail Transit Stations. Transp. Res. Rec. J. Transp. Res. Board 1538, 19–26 (1996).

    • Article
    • Google Scholar
  • 113.

    Pardee, G. L. & Philpott, S. M. Native plants are the bee{textquoteright}s knees: local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 17, 641–659 (2014).

    • Article
    • Google Scholar
  • 114.

    Rudd, H., Vala, J. & Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restor. Ecol. 10, 368–375 (2002).

    • Article
    • Google Scholar
  • 115.

    U.S. Census Bureau. QuickFacts Database. American Community Survey (2014). Available at: https://www.census.gov/quickfacts/fact/table/US/PST045218#. (Accessed: 14th February 2019).

  • 116.

    Ghose, R. & Pettygrove, M. Actors and networks in urban community garden development. Geoforum 53, 93–103 (2014).

    • Article
    • Google Scholar
  • 117.

    Murillo, R., Echeverria, S. & Vasquez, E. Differences in neighborhood social cohesion and aerobic physical activity by Latino subgroup. SSM – Popul. Heal. 2, 536–541 (2016).

    • Article
    • Google Scholar
  • 118.

    Grove, J. M., Locke, D. H. & O’Neil-Dunne, J. P. M. An ecology of prestige in New York City: Examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manage. 54, 402–419 (2014).

  • 119.

    Troy, A. R., Grove, J. M., O’Neil-Dunne, J. P. M., Pickett, S. T. A. & Cadenasso, M. L. Predicting opportunities for greening and patterns of vegetation on private urban lands. Environ. Manage. 40, 394–412 (2007).

  • 120.

    Grove, M. et al. The Legacy Effect: Understanding How Segregation and Environmental Injustice Unfold over Time in Baltimore. Ann. Am. Assoc. Geogr. 108 (2018).

    • Article
    • Google Scholar
  • 121.

    Chuang, W. C. et al. Tree canopy change and neighborhood stability: A comparative analysis of Washington, D.C. and Baltimore, MD. Urban For. Urban Green. 27, 363–372 (2017).

    • Article
    • Google Scholar
  • 122.

    Gradstein, M. & Justman, M. Education, social cohesion, and economic growth. Am. Econ. Rev. 92, 1192–1204 (2002).

    • Article
    • Google Scholar
  • 123.

    Esri Data & Maps. U.S. Institutions. U.S. Institutions Layer Package (2017). Available at: https://www.arcgis.com/home/item.html?id=007ff07891e34e339a6da82a5c44fd31. (Accessed: 14th February 2019).

  • 124.

    City of Baltimore. Parks. Baltimore City Open GIS data (2015). Available at: http://gis-baltimore.opendata.arcgis.com/datasets/parks. (Accessed: 14th February 2019).

  • 125.

    City of Baltimore. Recreation Centers. Baltimore City Open GIS data (2015). Available at: http://gis-baltimore.opendata.arcgis.com/datasets/recreation-centers. (Accessed: 14th February 2019).

  • 126.

    City of Chicago. Community Service Centers Map. City of Chicago Data Portal (2017). Available at: https://data.cityofchicago.org/Health-Human-Services/Community-Service-Centers-Map/tyd3-k85v. (Accessed: 14th February 2019).

  • 127.

    City of Chicago. Parks – Chicago Park District Park Boundaries (current). City of Chicago Data Portal (2016). Available at: https://data.cityofchicago.org/Parks-Recreation/Parks-Chicago-Park-District-Park-Boundaries-curren/ej32-qgdr. (Accessed: 14th February 2019).

  • 128.

    The City of New York. Parks Zones. NYC Open Data (2017). Available at: https://data.cityofnewyork.us/City-Government/Parks-Zones/rjaj-zgq7. (Accessed: 14th February 2019).

  • 129.

    The City of New York. Facilities Database – Community Centers. NYC Open Data (2017). Available at: https://data.cityofnewyork.us/City-Government/Facilities-Database-Shapefile/2fpa-bnsx. (Accessed: 14th February 2019).

  • 130.

    Peters, K., Elands, B. & Buijs, A. Social interactions in urban parks: stimulating social cohesion? Urban For. Urban Green. 9, 93–100 (2010).

    • Article
    • Google Scholar
  • 131.

    Gibson, T. Religion and civic engagement among America’s youth. Soc. Sci. J. 45, 504–514 (2008).

    • Article
    • Google Scholar
  • 132.

    Lewis, V. A., MacGregor, C. A. & Putnam, R. D. Religion, networks, and neighborliness: The impact of religious social networks on civic engagement. Soc. Sci. Res. 42, 331–346 (2013).

  • 133.

    Cradock, A. L., Kawachi, I., Colditz, G. A., Gortmaker, S. L. & Buka, S. L. Neighborhood social cohesion and youth participation in physical activity in Chicago. Soc. Sci. Med. 68, 427–435 (2009).

  • 134.

    Temkin, K. & Rohe, W. M. Social Capital and Neighborhood Stability: An Empirical Investigation. Hous. Policy Debate 9, 61–88 (1998).

    • Article
    • Google Scholar
  • 135.

    Aabø, S. The role and value of public libraries in the age of digital technologies. J. Librariansh. Inf. Sci. 37, 205–211 (2005).

    • Article
    • Google Scholar
  • 136.

    Ferguson, S. Are public libraries developers of social capital? A review of their contribution and attempts to demonstrate it. Aust. Libr. J. 61, 22–33 (2012).

    • Article
    • Google Scholar
  • 137.

    Martin, G., Clift, R. & Christie, I. Urban cultivation and its contributions to sustainability: Nibbles of food but oodles of social capital. Sustain. 8 (2016).

  • 138.

    USDA Economic Research Service. Food Access Research Atlas Database. Food Access Research Atlas (2017). Available at: https://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas/. (Accessed: 14th February 2019).

  • 139.

    Kuo, F. E. & Sullivan, W. C. Environment and crime in the inner city. Environ. Behav. 33, 343–367 (2001).

    • Google Scholar
  • 140.

    Esri ArcGIS. USA Crime Indexes. Esri Demographics (2017). Available at: https://doc.arcgis.com/en/esri-demographics/data/crime-indexes.htm. (Accessed: 14th February 2019).

  • 141.

    Hajat, A. et al. Air pollution and individual and neighborhood socioeconomic status: Evidence from the multi-ethnic study of atherosclerosis (MESA). Environ. Health Perspect. 121, 1325–1333 (2013).

  • 142.

    ArcGIS Hub. Environmental Health Hazard Index. ArcGIS Hub (2017). Available at: https://hub.arcgis.com/datasets/c7e2c62560bd4a999f0e0b2f4cee2494_0. (Accessed: 14th February 2019).

  • 143.

    US Environmental Protection Agency. Facilities Subject to Environmental Regulation. Geospatial Data Download Service (2017). Available at: https://www.epa.gov/enviro/geospatial-data-download-service. (Accessed: 14th February 2019).

  • 144.

    US Geological Society. Protected Areas Data. Protected Areas Data Portal (2016). Available at: https://gapanalysis.usgs.gov/padus/data/. (Accessed: 14th February 2019).

  • 145.

    US Fish & WIldlife Service. Wetlands Mapper. National Wetlands Inventory (2017). Available at: https://www.fws.gov/wetlands/data/Mapper.html. (Accessed: 14th February 2019).


  • Source: Ecology - nature.com

    3 Questions: Emre Gençer on the evolving role of hydrogen in the energy system

    Hurricane-Induced Rainfall is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds