in

First draft genome for the sand-hopper Trinorchestia longiramus

  • 1.

    Horton, T., Lowry, J. & De Broyer, C. World amphipoda database, http://www.marinespecies.org/amphipoda (2017).

  • 2.

    Copilaș‐Ciocianu, D., Zimța, A. A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. and Evol. Res. 57, 272–297 (2019).

    • Article
    • Google Scholar
  • 3.

    Holsinger, J. R. Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia 287, 131–145 (1994).

    • Article
    • Google Scholar
  • 4.

    Jelassi, R., Khemaissia, H., Zimmer, M., Garbe-Schönberg, D. & Nasri-Ammar, K. Biodiversity of Talitridae family (Crustacea, Amphipoda) in some Tunisian coastal lagoons. Zool. Stud. 54, 17 (2015).

    • Article
    • Google Scholar
  • 5.

    Romanova, E. V. et al. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 17, 1016 (2016).

  • 6.

    Tomikawa, K. & Nakano, T. Two new subterranean species of Pseudocrangonyx Akatsuka & Komai, 1922 (Amphipoda: Crangonyctoidea: Pseudocrangonyctidae), with an insight into groundwater faunal relationships in western Japan. J. Crustacean Biol. 38, 460–474 (2018).

    • Article
    • Google Scholar
  • 7.

    Wildish, D. Reproductive consequences of the terrestrial habit in Orchestia (Crustacea: Amphipoda). Int. J. Invert. Reprod. 1, 9–20 (1979).

    • Article
    • Google Scholar
  • 8.

    Griffiths, C., Stenton-Dozey, J. & Koop, K. In Sandy beaches as ecosystems 547–556 (Springer, 1983).

  • 9.

    Duarte, C., Navarro, J., Acuña, K. & Gómez, I. Feeding preferences of the sandhopper Orchestoidea tuberculata: the importance of algal traits. Hydrobiologia 651, 291–303 (2010).

    • Article
    • Google Scholar
  • 10.

    Rainbow, P., Malik, I. & O’brien, P. Physicochemical and physiological effects on the uptake of dissolved zinc and cadmium by the amphipod crustacean Orchestia gammarellus. Aquat. Toxicol. 25, 15–30 (1993).

  • 11.

    Casini, S. & Depledge, M. Influence of copper, zinc, and iron on cadmium accumulation in the talitrid amphipod, Platorchestia platensis. Bull. Environ. Contam. and Toxicol. 59, 500–506 (1997).

  • 12.

    Ungherese, G. et al. Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu)(Crustacea, Amphipoda). Environ. Pollut. 158, 1638–1643 (2010).

  • 13.

    Bickham, J. W., Sandhu, S., Hebert, P. D., Chikhi, L. & Athwal, R. Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat. Res. 463, 33–51 (2000).

  • 14.

    De Wolf, H., Blust, R. & Backeljau, T. The population genetic structure of Littorina littorea (Mollusca: Gastropoda) along a pollution gradient in the Scheldt estuary (The Netherlands) using RAPD analysis. Sci. Total Environ. 325, 59–69 (2004).

  • 15.

    Mohapatra, A., Rautray, T., Patra, A. K., Vijayan, V. & Mohanty, R. K. Elemental composition in mud crab Scylla serrata from Mahanadi estuary, India: in situ irradiation analysis by external PIXE. Food Chem. Toxicol. 47, 119–123 (2009).

  • 16.

    Pavesi, L., Tiedemann, R., De Matthaeis, E. & Ketmaier, V. Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea. Front. Zool. 10, 21 (2013).

  • 17.

    Ketmaier, V., Matthaeis, E. D., Fanini, L., Rossano, C. & Scapini, F. Variation of genetic and behavioural traits in the sandhopper Talitrus saltator (Crustacea Amphipoda) along a dynamic sand beach. Ethol. Ecol. Evol. 22, 17–35 (2010).

    • Article
    • Google Scholar
  • 18.

    Fanini, L., Marchetti, G. M., Baczewska, A., Sztybor, K. & Scapini, F. Behavioural adaptation to different salinities in the sandhopper Talitrus saltator (Crustacea: Amphipoda): Mediterranean vs Baltic populations. Mar. Freshwat. Res. 63, 275–281 (2012).

  • 19.

    Ugolini, A., Cincinelli, A., Martellini, T. & Doumett, S. Salt concentration and solar orientation in two supralittoral sandhoppers: Talitrus saltator (Montagu) and Talorchestia ugolinii Bellan Santini and Ruffo. J. Comp. Physiol. A 201, 455–460 (2015).

  • 20.

    Nourisson, D. & Scapini, F. Seasonal variation in the orientation of Talitrus saltator on a Mediterranean sandy beach: an ecological interpretation. Ethol. Ecol. Evol. 27, 277–293 (2015).

    • Article
    • Google Scholar
  • 21.

    Rivarola‐Duarte, L. et al. A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus. J. Exp. Zool. B: Mol. Dev. Evol. 322, 177–189 (2014).

  • 22.

    Poynton, H. C. et al. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. Environ. Sci. Technol. 52, 6009–6022 (2018).

  • 23.

    Zeng, V. et al. De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics 12, 581 (2011).

  • 24.

    Yo, Y. W. T. (Crustacea–Amphipoda) of the Korean coasts. Beaufortia 38, 153–178 (1988).

    • Google Scholar
  • 25.

    Kumar Patra, A. et al. The complete mitochondrial genome of the sand-hopper Trinorchestia longiramus (Amphipoda: Talitridae). Mitochon. DNA B 4, 2104–2105 (2019).

    • Article
    • Google Scholar
  • 26.

    Woo, J. et al. Demographic history of Trinorchestia longiramus (Amphipoda, Talitridae) in South Korea inferred from mitochondrial DNA sequence variation. Crustaceana 89, 1559–1573 (2016).

    • Article
    • Google Scholar
  • 27.

    Sasago, Y. Study for distribution and molecular phylogenetic analysis of the talitrid amphipods in Japan, M. Sc. Thesis, Mie University, Tsu, (2011).

  • 28.

    Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005).

  • 29.

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a laboratory manual. (Cold Spring Harbor Laboratory Press, 1989).

  • 30.

    Woo, S. et al. Efficient isolation of intact RNA from the soft coral Scleronephthya gracillimum (Kükenthal) for gene expression analyses. Integr. Biosci. 9, 205–209 (2005).

  • 31.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  • 32.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

  • 33.

    Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).

  • 34.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2010).

  • 35.

    Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

  • 36.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2015).

  • 37.

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

  • 38.

    Abrusán, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclass—a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25, 1329–1330 (2009).

  • 39.

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

  • 40.

    Bedell, J. A., Korf, I. & Gish, W. MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics 16, 1040–1041 (2000).

  • 41.

    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769, https://doi.org/10.1093/bioinformatics/btv661 (2016).

  • 42.

    Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119–e119 (2014).

  • 43.

    Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).

  • 44.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

  • 45.

    Minoche, A. E. et al. Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol. 16, 184 (2015).

  • 46.

    Au, K. F., Underwood, J. G., Lee, L. & Wong, W. H. Improving PacBio long read accuracy by short read alignment. Plos One 7, e46679, https://doi.org/10.1371/journal.pone.0046679 (2012).

  • 47.

    Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

  • 48.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494 (2013).

  • 49.

    Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).

  • 50.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

  • 51.

    She, R., Chu, J. S.-C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).

  • 52.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

  • 53.

    Lima, T. et al. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 37, D471–D478 (2008).

  • 54.

    Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2011).

  • 55.

    Nikolskaya, A. N., Arighi, C. N., Huang, H., Barker, W. C. & Wu, C. H. PIRSF family classification system for protein functional and evolutionary analysis. Evol. Bioinform. 2, 117693430600200033 (2006).

    • Article
    • Google Scholar
  • 56.

    Attwood, T. K. et al. PRINTS-S: the database formerly known as PRINTS. Nucleic Acids Res. 28, 225–227 (2000).

  • 57.

    Bru, C. et al. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33, D212–D215 (2005).

  • 58.

    Sigrist, C. J. et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38, D161–D166 (2009).

  • 59.

    Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C. & Gough, J. The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 32, D235–D239 (2004).

  • 60.

    Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2012).

  • 61.

    Patra, A. K. et al. First draft genome for the sand-hopper Trinorchestia longiramus. figshare, https://doi.org/10.6084/m9.figshare.8217854.v5 (2020).

  • 62.

    NCBI Sequence Read Archive, https://identifiers.org/ncbi/insdc.sra:SRP199018 (2019).

  • 63.

    Patra, A. K. et al. Trinorchestia longiramus isolate TLONG-mixed, whole genome shotgun sequencing project. GenBank, https://identifiers.org/ncbi/insdc:VCRD00000000 (2020).

  • 64.

    NCBI Assembly, https://identifiers.org/ncbi/insdc.gca:GCA_006783055.1 (2019).

  • 65.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

  • 66.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

  • 67.

    Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

  • 68.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  • 69.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973, https://doi.org/10.1093/bioinformatics/btp348 (2009).

  • 70.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  • 71.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

  • 72.

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

  • 73.

    Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997, https://doi.org/10.1093/molbev/mst100 (2013).

  • 74.

    Francia, M. E. et al. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion. Exp. Cell Res. 317, 1382–1396 (2011).

  • 75.

    Dermauw, W. & Van Leeuwen, T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45, 89–110 (2014).

  • 76.

    Radulović, Ž., Porter, L. M., Kim, T. K. & Mulenga, A. Comparative bioinformatics, temporal and spatial expression analyses of Ixodes scapularis organic anion transporting polypeptides. Ticks Tick Borne Dis. 5, 287–298 (2014).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels