
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793, https://doi.org/10.1073/pnas.0902080106 (2009).
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406, https://doi.org/10.1038/NCLIMATE1259 (2011).
Reuman, D. C., Holt, R. D. & Yvon-Durocher, G. A metabolic perspective on competition and body size reductions with warming. J. Anim. Ecol. 83, 59–69, https://doi.org/10.1111/1365-2656.12064 (2014).
Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: Improving predictions by integrating fossil, modern, and physiological data. Annu. Rev. Mar. Sci. 11, 369–390, https://doi.org/10.1146/annurev-marine-010318-095106 (2019).
Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, srep04132, https://doi.org/10.1038/srep04132 (2014).
Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Bio. 220, 2685–2696, https://doi.org/10.1242/jeb.134585 (2017).
Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692, https://doi.org/10.1126/science.ll63156 (2008).
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26(6), 285–291, https://doi.org/10.1016/j.tree.2011.03.005 (2011).
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178, https://doi.org/10.1111/j.1365-294X.2007.03413.x (2008).
Pálfy, J. & Smith, P. L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology 28(8), 747–750, 10.1130/0091-7613(2000)028<0747:sbejeo>2.3.co;2 (2000).
Morten, S. D. & Twitchett, R. J. Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 29–38, https://doi.org/10.1016/j.palaeo.2009.08.023 (2009).
Caswell, B. A. & Coe, A. L. Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic deoxygenation. Geology 41(11), 1163–1166, https://doi.org/10.1130/G34819.1 (2013).
Martindale, R. C. & Aberhan, M. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 103–120, https://doi.org/10.1016/j.palaeo.2017.01.009 (2017).
Caswell, B. & Dawn, S. J. Recovery of benthic communities following the Toarcian oceanic anoxic event in the Cleveland Basin, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 521, 114–126, https://doi.org/10.1016/j.palaeo.2019.02.014 (2019).
Ros-Franch, S. et al. Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the lower Jurassic of the Neuquén Basin, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 525, 57–67, https://doi.org/10.1016/j.palaeo.2019.04.009 (2019).
Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004, https://doi.org/10.1029/2009GC002788 (2010).
Dera, G. & Donnadieu, Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, PA2211, https://doi.org/10.1029/2012PA002283 (2012).
Them, T. R. et al. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. PNAS 115(26), 6596–6601, https://doi.org/10.1073/pnas.1803478115 (2018).
Fürsich, F. T., Berndt, R., Scheuer, T. & Gahr, M. Comparative ecological analysis of Toarcian (Lower Jurassic) benthic faunas from southern France and east-central Spain. Lethaia 34, 169–199, https://doi.org/10.1111/j.1502-3931.2001.tb00048.x (2001).
Gómez, J. J. & Goy, A. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306, 176–195, https://doi.org/10.1016/j.palaeo.2011.04.018 (2011).
García Joral, F., Baeza-Carratalá, J. F. & Goy, A. Changes in brachiopod body size prior to the Early Toarcian (Jurassic) mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 242–249, https://doi.org/10.1016/j.palaeo.2018.06.045 (2018).
Piazza, V., Duarte, L. V., Renaudie, J. & Aberhan, M. Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology 45(2), 296–316, https://doi.org/10.1017/pab.2019.11 (2019).
Ruvalcaba Baroni, I. et al. Ocean circulation in the Toarcian (Early Jurassic): A key control on deoxygenation and carbon burial on the European shelf. Paleoceanography and Paleoclimatology 33, 994–1012, https://doi.org/10.1029/2018PA003394 (2018).
García Joral, F., Gómez, J. J. & Goy, A. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in Northern and Central Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 367–380, https://doi.org/10.1016/j.palaeo.2011.01.023 (2011).
Danise, S., Twitchett, R. J. & Little, C. T. S. Environmental controls on Jurassic marine ecosystems during global warming. Geology 43(3), 263–266, https://doi.org/10.1130/G36390.1 (2015).
Danise, S. et al. Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 183–200, https://doi.org/10.1016/j.palaeo.2019.03.039 (2019).
Goy, A., Gómez, J. J. & Yébenes, A. El Jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad Norte). Est. Geol. 32, 391–423 (1976).
Gahr, M. E. Palökologie des Makrobenthos aus dem Unter-Toarc SW-Europas. Beringeria 31, 3–204 (2002).
Gahr, M. E. Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction. J. Iberian Geol. 31(2), 197–215 (2005).
Gómez, J. J. & Goy, A. Late Triassic and Early Jurassic palaeogeographic evolution and depositional cycles of the Western Tethys Iberian platform system (Eastern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 77–94, https://doi.org/10.1016/j.palaeo.2005.03.010 (2005).
García Joral, F. & Goy, A. Rhynchonellida (Brachiopoda) Biozones of the Toarcian in the Iberian and Cantabrian Cordilleras (Spain) in Comunicaciones del V Congreso del Jurásico de España (eds. Ruiz-Omeñaca, J. I., Piñuela, L. & García-Ramos, J. C.) 3–9 (Museo del Jurásico de Asturias, Colunga (2010).
Ullmann, C. V. et al. Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods. (revised ms submitted to Sci. Rep.).
Aurell, M. et al. Transgressive–regressive cycles and Jurassic palaeogeography of northeast Iberia. Sediment. Geol. 162, 239–271, https://doi.org/10.1016/S0037-0738(03)00154-4 (2003).
Fürsich, F. T. Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia 26, 327–346 (1994).
Brand, U. et al. Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation. Chem. Geol. 359, 23–31, https://doi.org/10.1016/j.chemgeo.2013.09.014 (2013).
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. & Howarth, R. J. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23, PA4217, https://doi.org/10.1029/2008PA001607 (2008).
Harazim, D. A. et al. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–390, https://doi.org/10.1111/j.1365-3091.2012.01344.x (2013).
Korte, C. et al. Jurassic climate mode governed by ocean gateway. Nat. Comm. 6, 10015, https://doi.org/10.1038/ncomms10015 (2015).
Thierry, J. et al. Middle Toarcian in Atlas Peri-Tethys Paleogeographical Maps (eds. Dercourt, J. et al.) 1–97 (Paris (2000).
van der Veer, G., Voerkelius, S., Lorentz, G., Heiss, G. & Hoogewerff, J. A. Spatial interpolation of the deuterium and oxygen-18 composition of global precipitation using temperature as ancillary variable. J. Geochem. Explor. 101(2), 175–184, https://doi.org/10.1016/j.gexplo.2008.06.008 (2009).
Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. PNAS 105(40), 15452–15457, https://doi.org/10.1073/pnas.0803833105 (2008).
Parker, L. M. et al. Predicting the response of molluscs to the impact of ocean acidification. Biology 2, 651–692, https://doi.org/10.3390/biology2020651 (2013).
Cross, E. L., Harper, E. M. & Peck, L. S. A 120-year record of resilience to environmental change in brachiopods. Glob. Change Biol. 24, 2262–2271, https://doi.org/10.1111/gcb.14085 (2018).
Peck, L. S. & Harper, E. M. Variation in size of living articulated brachiopods with latitude and depth. Mar. Biol. 157, 2205–2213, https://doi.org/10.1007/s00227-010-1486-5 (2010).
Steele-Petrović, H. M. Brachiopod food and feeding processes. Palaeontology 19, 417–436 (1976).
Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77, https://doi.org/10.1111/geb.12847 (2019).
Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109(47), 19310–19314, https://doi.org/10.1073/pnas.1210460109 (2012).
Verberk, W. C. E. P. & Atkinson, D. Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27, 1275–1285, https://doi.org/10.1111/1365-2435.12152 (2013).
Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B 283, 20161364, https://doi.org/10.1098/rspb.2016.1364 (2016).
Berke, S. K., Jablonski, D., Krug, A. Z., Roy, K. & Tomasovych, A. Beyond Bergmann’s rule: size–latitude relationships in marine Bivalvia world-wide. Glob. Ecol. Biogeogr. 22, 173–183, https://doi.org/10.1111/j.1466-8238.2012.00775.x (2013).
Atkinson, D., Morley, S. A. & Hughes, R. N. From cells to colonies: At what levels of body organization does the ‘temperature-size rule’ apply? Evol. Dev. 8(2), 202–214, https://doi.org/10.1111/j.1525-142X.2006.00090.x (2006).
Pörtner, H.-O. Climate dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res. II 53(8-10), 1071–1104, https://doi.org/10.1016/j.dsr2.2006.02.015 (2006).
Pörtner, H.-O. & Knust, R. Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science 315(5808), 95–97, https://doi.org/10.1126/science.1135471 (2017).
Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. L. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256, https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).
Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893, https://doi.org/10.1242/jeb.037523 (2010).
Clark, M. S. et al. Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multi-omics approach. Glob. Chang. Biol. 23, 318–330, https://doi.org/10.1111/gcb.13357 (2017).
Vörös, A. The smooth brachiopods of the Mediterranean Jurassic: Refugees or invaders? Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 222–242, https://doi.org/10.1016/j.palaeo.2005.04.006 (2005).
Payne, J. L., Heim, N. A., Knope, M. L. & McClain, C. R. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proc. R. Soc. Lond. B 281, 20133122, https://doi.org/10.1098/rspb.2013.3122 (2014).
Canudo, J. I. The collection of type fossils of the Natural Science Museum of the University of Zaragoza (Spain). Geoheritage 10, 385–392, https://doi.org/10.1007/s12371-017-0228-1 (2018).
Schöne, B. R. & Fiebig, J. Seasonality in the North Sea during the Allerød and Late Medieval climate optimum using bivalve sclerochronology. Int. J. Earth Sci. 98(1), 83–98, https://doi.org/10.1007/s00531-008-0363-7 (2009).
Ullmann, C. V., Wiechert, U. & Korte, C. Oxygen isotope fluctuations in a modern North Sea oyster (Crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies. Chem. Geol. 277(1-2), 160–166, https://doi.org/10.1016/j.chemgeo.2010.07.019 (2010).
Ullmann, C. V., Frei, R., Korte, C. & Lüter, C. Element/Ca, C and O isotope ratios in modern brachiopods: Species-specific signals of biomineralization. Chem. Geol. 460, 15–24, https://doi.org/10.1016/j.chemgeo.2017.03.034 (2017).
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470, https://doi.org/10.1016/j.epsl.2006.11.009 (2007).
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202, https://doi.org/10.1029/2007PA001459 (2008).
Kosnik, M. A., Jablonski, D., Lockwood, R. & Novack-Gottshall, P. M. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21(6), 588–597, https://doi.org/10.2110/palo.2006.p06-012r (2006).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137: https://CRAN.R-project.org/package=nlme (2018).
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).
McKinney, M. L. Classifying and analyzing evolutionary trends in Evolutionary trends (ed. McNamara, K. J.) 28–58 (Tucson, University of Arizona Press (1990).
Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Soft. 26(3), 1–22, http://www.jstatsoft.org/article/view/v027i03 (2008).
Hyndman, R. et al. forecast: Forecasting functions for time series and linear models. R package version 8.5, http://pkg.robjhyndman.com/forecast (2019).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).
Source: Ecology - nature.com
