
Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D. & Volney, W. J. A. An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 21, 207–226 (2013).
Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. CATENA 160, 134–140 (2018).
Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Goulden, M. L. et al. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214–217 (1998).
Kauppi, P. E., Posch, M. & Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).
Koven, C. D. Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nat. Geosci. 6, 452–456 (2013).
Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 14, 2898–2909 (2008).
Gentine, P. et al. Coupling between the terrestrial carbon and water cycles—a review. Environ. Res. Lett. 14, 083003 (2019).
Woo, M., Thorne, R., Szeto, K. & Yang, D. Streamflow hydrology in the boreal region under the influences of climate and human interference. Philos. Trans. R. Soc. B 363, 2249–2258 (2008).
Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).
Lafleur, P. M. & Rouse, W. R. The influence of surface cover and climate on energy partitioning and evaporation in a subarctic wetland. Bound. Layer Meteorol. 44, 327–347 (1988).
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
Brümmer, C. et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 153, 14–30 (2012).
Barr, A. G., Betts, A. K., Black, T. A., McCaughey, J. H. & Smith, C. D. Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. J. Geophys. Res. Atmos. 106, 33543–33550 (2001).
Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration. J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).
Admiral, S. W. & Lafleur, P. M. Partitioning of latent heat flux at a northern peatland. Aquat. Bot. 86, 107–116 (2007).
Williams, T. G. & Flanagan, L. B. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108, 38–46 (1996).
Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).
Kellner, E. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire. Agric. For. Meteorol. 110, 101–123 (2001).
Helbig, M. et al. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob. Change Biol. 22, 4048–4066 (2016).
Chaudhary, N., Miller, P. A. & Smith, B. Modelling past, present and future peatland carbon accumulation across the Pan-Arctic region. Biogeosciences 14, 4023–4044 (2017).
Qiu, C. et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Model Dev. 11, 497–519 (2018).
Wu, Y., Verseghy, D. L. & Melton, J. R. Integrating peatlands into the coupled canadian land surface scheme (class) v3.6 and the canadian terrestrial ecosystem model (CTEM) v2.0. Geosci. Model Dev. 9, 2639–2663 (2016).
Bechtold, M. et al. PEAT-CLSM: a specific treatment of peatland hydrology in the NASA catchment land surface model. J. Adv. Model. Earth Syst. 11, 2130–2162 (2019).
Poulter, B. et al. Plant functional type mapping for earth system models. Geosci. Model Dev. 4, 993–1010 (2011).
Abramowitz, G., Leuning, R., Clark, M. & Pitman, A. Evaluating the performance of land surface models. J. Clim. 21, 5468–5481 (2008).
Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
Yurova, A., Tolstykh, M., Nilsson, M. & Sirin, A. Parameterization of mires in a numerical weather prediction model. Water Resour. Res. 50, 8982–8996 (2014).
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
Ewers, B. E., Gower, S. T., Bond-Lamberty, B. & Wang, C. K. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ. 28, 660–678 (2005).
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999).
Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).
Konings, A. G., Katul, G. G. & Porporato, A. The rainfall–no rainfall transition in a coupled land-convective atmosphere system. Geophys. Res. Lett. 37, L14401 (2010).
Sikma, M. & Vilà-Guerau de Arellano, J. Substantial reductions in cloud cover and moisture transport by dynamic plant responses. Geophys. Res. Lett. 46, 1870–1878 (2019).
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).
Alekseychik, P. et al. Surface energy exchange in pristine and managed boreal peatlands. Mires Peat 20, 1–26 (2018).
Zoltai, S. C. & Vitt, D. H. Canadian wetlands: environmental gradients and classification. Vegetatio 118, 131–137 (1995).
Sulman, B. N. et al. CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table. Geophys. Res. Lett. 37, L19702 (2010).
Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).
Clenciala, E., Kucera, J., Ryan, M. G. & Lindroth, A. Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration. Ann. Sci. For. 55, 47–61 (1998).
Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).
Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).
Charman, D. J. Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. The Holocene 17, 217–227 (2007).
Rydin, H. Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45, 374–379 (1985).
Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrol. 8, 113–127 (2014).
Waddington, J. M., Kellner, E., Strack, M. & Price, J. S. Differential peat deformation, compressibility, and water storage between peatland microforms: Implications for ecosystem function and development. Water Resour. Res. 46, W07538 (2010).
Nijp, J. J. et al. Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections. Sci. Total Environ. 580, 1389–1400 (2017).
Heijmans, M. M. P. D., van der Knaap, Y. A. M., Holmgren, M. & Limpens, J. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob. Change Biol. 19, 2240–2250 (2013).
Sulman, B. N., Desai, A. R. & Mladenoff, D. J. Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems 16, 491–507 (2013).
Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).
Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 024027 (2013).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
Hollinger, D. Y. et al. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Glob. Change Biol. 5, 891–902 (1999).
Papale, D. et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).
Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).
Humphreys, E. R. et al. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J. Geophys. Res. Biogeosciences 111, G04011 (2006).
Verma, S. B. Aerodynamic Resistances to Transfers of Heat, Mass and Momentum (eds Black, T. A. et al.) Vol. 177, 13–20 (International Association of Hydrological Sciences, 1989); http://hydrologie.org/redbooks/a177/iahs_177_0013.pdf
Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).
Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M. & Roulet, N. T. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J. Ecol. 90, 25–36 (2002).
Kelliher, F. M., Leuning, R., Raupach, M. R. & Schulze, E.-D. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 73, 1–16 (1995).
Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H v006: MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid (NASA, 2015); https://doi.org/doi:10.5067/MODIS/MOD15A2H.006
Mao, J. & Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/1653
Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmospheres 122, 2061–2079 (2017).
Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).
Helbig, M. Analysis of Boreal Peatland and Forest Evapotranspiration (Zenodo, 2020); https://doi.org/10.5281/zenodo.3653056
Source: Ecology - nature.com
