in

Comparative litter decomposability traits of selected native and exotic woody species from an urban environment of north-western Siwalik region, India

  • 1.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

  • 2.

    Vilà, M. et al. Explaining the variation in impacts of non-native plants on local-scale species richness: The role of phylogenetic relatedness. Glob. Ecol. Biogeogr. 24, 139–146 (2015).

    • Article
    • Google Scholar
  • 3.

    Gaertner, M. et al. Invasive plants as drivers of regime shifts: Identifying high-priority invaders that alter feedback relationships. Divers. Distrib. 20, 733–744 (2014).

    • Article
    • Google Scholar
  • 4.

    Flory, S. L. & Clay, K. Non-native grass invasion alters native plant composition in experimental communities. Biol. Invasions 12, 1285–1294 (2010).

    • Article
    • Google Scholar
  • 5.

    Potgieter, L. J. et al. Alien plants as mediators of ecosystem services and disservices in urban systems: A global review. Biol. Invasions 19, 3571–3588 (2017).

    • Article
    • Google Scholar
  • 6.

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).

    • Article
    • Google Scholar
  • 7.

    Liu, Y. et al. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Chang. Biol. 23, 3363–3370 (2017).

  • 8.

    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).

  • 9.

    Leishman, M. R. & Gallagher, R. V. Will there be a shift to alien-dominated vegetation assemblages under climate change? Divers. Distrib. 21, 848–852 (2015).

    • Article
    • Google Scholar
  • 10.

    Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).

  • 11.

    Jeschke, J. M. & Heger, T. Invasion Biology: Hypotheses and Evidence, https://doi.org/10.1079/9781780647647.0000 (CABI, 2018).

  • 12.

    Pickett, S. T. A. et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manage. 92, 331–362 (2011).

  • 13.

    Cadotte, M. W., Yasui, S. L. E., Livingstone, S. & MacIvor, J. S. Are urban systems beneficial, detrimental, or indifferent for biological invasion? Biol. Invasions 19, 3489–3503 (2017).

    • Article
    • Google Scholar
  • 14.

    Jeschke, J. M. & Starzer, J. Propagule pressure hypothesis. in Invasion Biology: Hypotheses and Evidence (eds. Jeschke, J. M. & Heger, T.) 147–153, https://doi.org/10.1079/9781780647647.0147 (CABI, 2018).

  • 15.

    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across. Europe. Proc. Natl. Acad. Sci. U. S. A. 107, 12157–12162 (2010).

  • 16.

    Aronson, M. F. J., Handel, S. N., La Puma, I. P. & Clemants, S. E. Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosyst. 18, 31–45 (2015).

    • Article
    • Google Scholar
  • 17.

    Elton, C. S. The Ecology of Invasions by Animals and Plants, https://doi.org/10.1007/978-1-4899-7214-9 (Springer, 1958).

  • 18.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    • Article
    • Google Scholar
  • 19.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions 1, 21–32 (1999).

    • Article
    • Google Scholar
  • 20.

    McLean, P., Gallien, L., Wilson, J. R., Gaertner, M. & Richardson, D. M. Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biol. Invasions 19, 3541–3555 (2017).

    • Article
    • Google Scholar
  • 21.

    Jeschke, J. M., Debille, S. & Lortie, C. J. Biotic resistance and island susceptibility hypotheses. in Invasion Biology: Hypotheses and Evidence (eds. Jeschke, J. M. & Heger, T.) 60–70, https://doi.org/10.1079/9781780647647.0060 (CABI, 2018).

  • 22.

    Rossiter-Rachor, N. A. et al. Invasive Andropogon gayanus (Gamba grass) alters litter decomposition and nitrogen fluxes in an Australian tropical savanna. Sci. Rep. 7, 11705 (2017).

  • 23.

    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).

  • 24.

    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).

  • 25.

    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).

  • 26.

    Jo, I., Fridley, J. D. & Frank, D. A. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species. New Phytol. 209, 115–122 (2016).

  • 27.

    Bottollier-Curtet, M., Charcosset, J. Y., Planty-Tabacchi, A. M. & Tabacchi, E. Chemical composition rather than plant geographic origin drives the breakdown of riparian plant litter with changes in associated invertebrate diversity. Plant Soil 390, 265–278 (2015).

  • 28.

    Zhu, W. et al. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau. Sci. Rep. 6, 34290 (2016).

  • 29.

    Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79, 439–449 (1997).

    • Article
    • Google Scholar
  • 30.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

  • 31.

    González, G. & Seastedt, T. R. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82, 955–964 (2001).

    • Article
    • Google Scholar
  • 32.

    Ayres, E., Steltzer, H., Berg, S. & Wall, D. H. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J. Ecol. 97, 901–912 (2009).

  • 33.

    Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009).

  • 34.

    Yuan, X. et al. Litter decomposition in fenced and grazed grasslands: A test of the home-field advantage hypothesis. Geoderma 354 (2019).

  • 35.

    Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E. & Parton, W. J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 6, 751–765 (2000).

  • 36.

    Ayres, E., Dromph, K. M. & Bardgett, R. D. Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biol. Biochem. 38, 183–186 (2006).

  • 37.

    Gießelmann, U. C. et al. Lack of home-field advantage in the decomposition of leaf litter in the Atlantic rainforest of Brazil. Appl. Soil Ecol. 49, 5–10 (2011).

    • Article
    • Google Scholar
  • 38.

    Bachega, L. R. et al. Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For. Ecol. Manage. 359, 33–43 (2016).

    • Article
    • Google Scholar
  • 39.

    Lin, H. et al. Effect of N addition on home-field advantage of litter decomposition in subtropical forests. For. Ecol. Manage. 398, 216–225 (2017).

    • Article
    • Google Scholar
  • 40.

    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).

    • Article
    • Google Scholar
  • 41.

    Tao, J. et al. Traits including leaf dry matter content and leaf pH dominate over forest soil pH as drivers of litter decomposition among 60 species. Funct. Ecol. 33, 1798–1810 (2019).

    • Article
    • Google Scholar
  • 42.

    Pakeman, R. J., Eastwood, A. & Scobie, A. Leaf dry matter content as a predictor of grassland litter decomposition: A test of the ‘mass ratio hypothesis’. Plant Soil 342, 49–57 (2011).

  • 43.

    Pérez-Harguindeguy, N. et al. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218, 21–30 (2000).

    • Article
    • Google Scholar
  • 44.

    Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).

    • Article
    • Google Scholar
  • 45.

    Liu, G. et al. Specific leaf area predicts dryland litter decomposition via two mechanisms. J. Ecol. 106, 218–229 (2018).

  • 46.

    Hättenschwiler, S. & Jørgensen, H. B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763 (2010).

  • 47.

    Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).

  • 48.

    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).

    • Article
    • Google Scholar
  • 49.

    Taylor, B. R., Parkinson, D. & Parsons, W. F. J. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology 70, 97–104 (1989).

    • Article
    • Google Scholar
  • 50.

    Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465–472 (1978).

  • 51.

    Frainer, A., Moretti, M. S., Xu, W. & Gessner, M. O. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550–561 (2015).

  • 52.

    Melillo, J. M., Aber, J. D. & Muratore, J. F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626 (1982).

  • 53.

    Incerti, G. et al. Faster N release, but not C loss, from leaf litter of invasives compared to native species in mediterranean ecosystems. Front. Plant Sci. 9, 534 (2018).

  • 54.

    Hernández, E., Questad, E. J., Meyer, W. M. & Suding, K. N. The effects of nitrogen deposition and invasion on litter fuel quality and decomposition in a Stipa pulchra grassland. J. Arid Environ. 162, 35–44 (2019).

  • 55.

    Bumb, I. et al. Traits determining the digestibility-decomposability relationships in species from Mediterranean rangelands. Ann. Bot. 121, 459–469 (2018).

  • 56.

    Directorate of Economic and Statistics. Gross State Domestic Product. (Government of India, 2019).

  • 57.

    Hui, C., Richardson, D. M. & Visser, V. Ranking of invasive spread through urban green areas in the world’s 100 most populous cities. Biol. Invasions 19, 3527–3539 (2017).

    • Article
    • Google Scholar
  • 58.

    Aragón, R., Montti, L., Ayup, M. M. & Fernández, R. Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecol. 54, 21–28 (2014).

  • 59.

    Ashton, I. W., Hyatt, L. A., Howe, K. M., Gurevitch, J. & Lerdau, M. T. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol. Appl. 15, 1263–1272 (2005).

    • Article
    • Google Scholar
  • 60.

    Anning, A. K., Gyamfi, B. & Effah, A. T. Broussonetia papyrifera controls nutrient return to soil to facilitate its invasion in a tropical forest of Ghana. J. Plant Ecol. 11, 909–918 (2018).

    • Article
    • Google Scholar
  • 61.

    Baruch, Z. & Goldstein, G. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121, 183–192 (1999).

  • 62.

    Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).

  • 63.

    Osunkoya, O. O. & Perrett, C. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biol. Fertil. Soils 47, 349–355 (2011).

  • 64.

    Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol. 83, 887 (1995).

    • Article
    • Google Scholar
  • 65.

    Felker-Quinn, E., Schweitzer, J. A. & Bailey, J. K. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol. Evol. 3, 739–751 (2013).

  • 66.

    Müller-Schärer, H. & Steinger, T. Predicting evolutionary change in invasive, exotic plants and its consequences for plant-herbivore interactions. in Genetics, Evolution and Biological Control (eds. Ehler, L., Sforza, R. & Mateille, T.) 137–162, https://doi.org/10.1079/9780851997353.0137 (CABI, 2004).

  • 67.

    Baker, H. G. Characteristics and modes of origin of weeds. In The Genetics of Colonizing Species (eds. Baker, H. G. & Stebbins, G. L.) 147–168 (Academic Press Inc., N.Y., 1965).

  • 68.

    Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J. & Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 9, 981–993 (2006).

  • 69.

    Darwin, C. On the Origin of Species by means of Natural Selection. (John Murray, 1860).

  • 70.

    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    • Article
    • Google Scholar
  • 71.

    Coûteaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10, 63–66 (1995).

  • 72.

    Veen, G. F. C., Sundqvist, M. K. & Wardle, D. A. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Funct. Ecol. 29, 981–991 (2015).

    • Article
    • Google Scholar
  • 73.

    Li, Y. et al. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biol. Biochem. 130, 33–42 (2019).

  • 74.

    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).

  • 75.

    McLeod, M. L. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).

  • 76.

    CAB International. Invasive Species Compendium. (2019). Available at, https://www.cabi.org/isc (Accessed: 27th July 2019).

  • 77.

    Parker, R. N. A Forest Flora for the Punjab with Hazara and Delhi . (Government Printing, Punjab, 1924).

  • 78.

    Khuroo, A. A. et al. Alien flora of India: Taxonomic composition, invasion status and biogeographic affiliations. Biol. Invasions 14, 99–113 (2012).

    • Article
    • Google Scholar
  • 79.

    Doughty, R. W. The Eucalyptus: A Natural and Commercial History of the Gum Tree . (Johns Hopkins University Press, 2000).

  • 80.

    Harwood, C. E. Grevillea robusta: An Annotated Bibliography. (International Council for Research in Agroforestry, 1989).

  • 81.

    Ghate, V. S. Noteworthy plant invasions in the flora of Western Ghats of Maharashtra. J. Bombay Nat. Hist. Soc 88, 390–394 (1991).

    • Google Scholar
  • 82.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

  • 83.

    Moore, P. D. & Chapman, S. B. Methods in Plant Ecology. (Blackwell Scientific, 1986).

  • 84.

    Anderson, J. M. & Ingram, J. S. I. Tropical Soil Biology and Fertility: A Handbook of Methods . Second edition (CABI, 1993).

  • 85.

    Van Soest, P. J. & Wine, R. H. Determination of lignin and cellulose in acid detergent fiber with permanganate. J. A.O.A.C. 51, 780–785 (1968).

    • Google Scholar
  • 86.

    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    • Article
    • Google Scholar
  • 87.

    Peterson, B. G. & Carl, P. PerformanceAnalytics: Econometric tools for performance and risk analysis. Available at, https://CRAN.Rproject.org/package=PerformanceAnalytics (2019).

  • 88.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

  • 89.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at, http://www.Rproject.org/ (2018).


  • Source: Ecology - nature.com

    3 Questions: Harnessing wave power to rebuild islands

    Climate knowledge for everyone