in

Clarifying relationships between cranial form and function in tapirs, with implications for the dietary ecology of early hominins

  • 1.

    MacFadden, B. J., Cerling, T. E., Harris, J. M. & Prado, J. Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecol. Biogeogr. 8, 137–149 (1999).

    • Google Scholar
  • 2.

    MacFadden, B. J. Fossil horses–evidence for evolution. Science 307, 1728–1730 (2005).

  • 3.

    Kay, R. F. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43, 195–215 (1975).

  • 4.

    Wright, B. W. Craniodental biomechanics and dietary toughness in the genus Cebus. J. Hum. Evol. 48, 473–492 (2005).

    • PubMed
    • Google Scholar
  • 5.

    Menegaz, R. A. et al. Evidence for the influence of diet on cranial form and robusticity. Anat. Rec. 293, 630–641 (2010).

    • Google Scholar
  • 6.

    Du Brul, E. L. Early hominid feeding mechanisms. Am. J. Phys. Anthropol. 47, 305–320 (1977).

    • PubMed
    • Google Scholar
  • 7.

    Lucas, P. W., Constantino, P. J. & Wood, B. A. Inferences regarding the diet of extinct hominins: structural and functional trends in dental and mandibular morphology within the hominin clade. J. Anat. 212, 486–500 (2008).

  • 8.

    Rak, Y. The Australopithecine Face. (New York: Academic Press, 1983).

    • Google Scholar
  • 9.

    Smith, A. L. et al. The feeding biomechanics and dietary ecology of Paranthropus boisei. Anat. Rec. 298, 145–167 (2015).

    • Google Scholar
  • 10.

    Strait, D. S. et al. The feeding biomechanics and dietary ecology of Australopithecus africanus. Proc. Natl. Acad. Sci. 106, 2124–2129 (2009).

  • 11.

    Ledogar, J. A. et al. Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods. Nat. Commun. 7(7), 10596, https://doi.org/10.1038/ncomms10596 (2016).

  • 12.

    Ungar, P. S. Dental topography and human evolution with comments on the diets of Australopithecus africanus and Paranthropus robustus in Dental Perspectives on Human Evolution: State of the Art Research in Dental Anthropology (eds. Bailey, S., Hublin, J. J.) 321–344 (Springer, Dordrecht, 2007).

  • 13.

    Wood, B. A. & Schroer, K. Reconstructing the diet of an extinct hominin taxon: the role of extant primate models. Int. J. Primatol. 33, 716–742 (2012).

    • ADS
    • Google Scholar
  • 14.

    Daegling, D. J. et al. Viewpoints: feeding mechanics, diet, and dietary adaptations in early hominins. Am. J. Phys. Anthropol. 151, 356–371 (2013).

    • PubMed
    • Google Scholar
  • 15.

    Daegling, D. J. & Grine, F. E. Feeding behaviour and diet in Paranthropus boisei: the limits of functional inference from the mandible in Human Paleontology and Prehistory: Contributions in Honor of Yoel Rak (eds. Marom, A., Hovers, E.) 109-125 (Springer, Dordrecht, 2017).

  • 16.

    Grine, F. E. et al. Craniofacial biomechanics and functional and dietary inferences in hominin paleontology. J. Hum. Evol. 58, 293–308 (2010).

    • PubMed
    • Google Scholar
  • 17.

    Grine, F. E. & Daegling, D. J. Functional morphology, biomechanics and the retrodiction of early hominin diets. Comptes. Rendus. Palevol. 16, 613–631 (2017).

    • Google Scholar
  • 18.

    Ross, C. F. & Iriarte-Diaz, J. What does feeding system morphology tell us about feeding? Evol. Anthropol 23, 105–120 (2014).

    • PubMed
    • Google Scholar
  • 19.

    Ross, C. F., Iriarte-Diaz, J. & Nunn, C. L. Innovative approaches to the relationship between diet and mandibular morphology in primates. Int. J. Primatol. 33, 632–660 (2012).

    • Google Scholar
  • 20.

    Kimbel, W. H., Rak, Y. & Johanson, D. C. The Skull of Australopithecus afarensis. (Oxford, Oxford University Press, 2004).

  • 21.

    Strait, D. S. et al. Viewpoints: diet and dietary adaptations in early hominins: the hard food perspective. Am. J. Phys. Anthropol. 151, 339–355 (2013).

    • PubMed
    • Google Scholar
  • 22.

    Ravosa, M. J. et al. Adaptive plasticity in the mammalian masticatory complex: you are what, and how, you eat. In Primate Craniofacial Biology and Function (eds. Vinyard, C. J., Ravosa, M. J. & Wall, C. E.) 293–328 (Springer, New York, 2013).

  • 23.

    Ravosa, M. J., Menegaz, R. A., Scott, J. E., Daegling, D. J. & McAbee, K. R. Limitations of a morphological criterion of adaptive inference in the fossil record. Biol. Rev. 91, 883–898 (2016).

    • PubMed
    • Google Scholar
  • 24.

    Toro-Ibacache, V., Zapata Muñoz, V. & O’Higgins, P. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting. Ann. Anat. 203, 59–68 (2016).

    • PubMed
    • Google Scholar
  • 25.

    Toro-Ibacache, V., Fitton, L. C., Fagan, M. J. & O’Higgins, P. Validity and sensitivity of a human cranial finite element model: implications for comparative studies of biting performance. J. Anat. 228, 70–84 (2016).

    • PubMed
    • Google Scholar
  • 26.

    Ungar, P. S., Grine, F. E. & Teaford, M. F. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. Plos One 3, e2044, https://doi.org/10.1371/journal.pone.0002044 (2008).

  • 27.

    Grine, F. E., Sponheimer, M., Ungar, P. S., Lee‐Thorp, J. & Teaford, M. F. Dental microwear and stable isotopes inform the paleoecology of extinct hominins. Am. J. Phys. Anthropol. 148, 285–317 (2012).

    • PubMed
    • Google Scholar
  • 28.

    Cerling, T. E. et al. Diet of Paranthropus boisei in the early Pleistocene of East Africa. Proc. Natl. Acad. Sci. USA 108, 9337–9341 (2011).

  • 29.

    Lee-Thorp, J. The demise of “Nutcracker Man”. Proc. Natl. Acad. Sci. USA 108, 9319–9320 (2011).

  • 30.

    Judex, S., Lei, X., Han, D. & Rubin, C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J. Biomech. 40, 1333–1339 (2006).

    • PubMed
    • Google Scholar
  • 31.

    Ozcivici, E. et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6, 50–59 (2009).

    • Google Scholar
  • 32.

    Ravosa, M. J., Kunwar, R., Stock, S. R. & Stack, M. S. Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints. J. Exp. Biol. 210, 628–641 (2007).

    • PubMed
    • Google Scholar
  • 33.

    Scott, J. E., McAbee, K. R., Eastman, M. M. & Ravosa, M. J. Experimental perspectives on fallback foods and dietary adaptations in early hominins. Biol. Lett. 10, 20130789, https://doi.org/10.1098/rsbl.2013.0789 (2014).

  • 34.

    Wood, B. & Schroer, K. Reconstructing the diet of an extinct hominin taxon: the role of extant primate models. Int. J. Primatol. 33, 716–742 (2010).

    • Google Scholar
  • 35.

    Van Valkenburgh, B. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).

    • PubMed
    • Google Scholar
  • 36.

    Tanner, J. B., Dumont, E. R., Sakai, S. T., Lundrigan, B. L. & Holekamp, K. E. Of arcs and vaults: the biomechanics of bone‐cracking in spotted hyenas (Crocuta crocuta). Biol. J. Linn. Soc 95, 246–255 (2008).

    • Google Scholar
  • 37.

    Schubert, B. W., Ungar, P. S. & DeSantis, L. R. G. Carnassial microwear and dietary behaviour in large carnivorans. J. Zool 280, 257–263 (2010).

    • Google Scholar
  • 38.

    DeSantis, L. R. G., Schubert, B. W., Scott, J. R. & Ungar, P. S. Implications of diet for the extinction of saber-toothed cats and American lions. PloS One 7, e52453, https://doi.org/10.1371/journal.pone.0052453 (2012).

  • 39.

    DeSantis, L. R. G. et al. Assessing niche conservatism using a multi-proxy approach: dietary ecology of extinct and extant spotted hyenas. Paleobiology 43, 286–303 (2017).

    • Google Scholar
  • 40.

    Van Valkenburgh, B., Teaford, M. F. & Walker, A. Molar microwear and diet in large carnivores: inferences concerning diet in the sabretooth cat, Smilodon fatalis. J. Zool 222, 319–340 (1990).

    • Google Scholar
  • 41.

    Davis, D. D. The giant panda: a morphological study of evolutionary mechanisms (Vol. 3) (Chicago Natural History Museum, Chicago, 1964).

  • 42.

    Jin, C. et al. The first skull of the earliest giant panda. Proc. Natl. Acad. Sci. USA 104, 10932–10937 (2007).

  • 43.

    Figueirido, B., Tseng, Z. J., Serrano-Alarcón, F. J., Martín-Serra, A. & Pastor, J. F. Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning. Biol. Letters 10, 20140196, https://doi.org/10.1098/rsbl.2014.0196 (2014).

    • Article
    • Google Scholar
  • 44.

    Donohue, S. L., DeSantis, L. R. G., Schubert, B. W. & Ungar, P. S. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PloS One 8, e77531, https://doi.org/10.1371/journal.pone.0077531 (2013).

  • 45.

    Tseng, Z.J. & Flynn, J.J. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora. Science Advances 4, eaao5441, https://doi.org/10.1126/sciadv.aao5441 (2018).

  • 46.

    Holbrook, L. T. The unusual development of the sagittal crest in the Brazilian tapir (Tapirus terrestris). J. Zool 256, 215–219 (2002).

    • Google Scholar
  • 47.

    DeSantis, L. R. G. & MacFadden, B. Identifying forested environments in deep time using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Cour. Forsch.-Inst. Senckenberg 15, 147–157 (2007).

    • Google Scholar
  • 48.

    Janzen, D. H. Seeds in tapir dung in Santa Rosa National Park, Costa Rica. Brenesia 19/20, 129–135 (1982).

    • Google Scholar
  • 49.

    Williams, K.D. The Central American Tapir (Tapirus bairdii Gill) in northwestern Costa Rica. (Michigan State University, Michigan, 1984).

  • 50.

    O’Farrill, G., Galetti, M. & Campos-Arceiz, A. Frugivory and seed dispersal by tapirs: an insight on their ecological role. Integr. Zool 8, 4–17 (2013).

    • PubMed
    • Google Scholar
  • 51.

    Bodmer, R. E. Fruit patch size and frugivory in the lowland tapir (Tapirus terrestris). J. Zool 222, 121–128 (1990).

    • Google Scholar
  • 52.

    Henry, O., Feer, F. & Sabatier, D. Diet of the lowland tapir (Tapirus terrestris L.) in French Guiana. Biotropica 32, 364–368 (2000).

    • Google Scholar
  • 53.

    DeSantis, L. R. G. Stable isotope ecology of extant tapirs from the Americas. Biotropica 43, 746–754 (2011).

    • Google Scholar
  • 54.

    Downer, C. C. Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). J. Zool. 254, 279–291 (2001).

    • Google Scholar
  • 55.

    Hulbert, R. C. & Wallace, S. C. Phylogenetic analysis of late Cenozoic Tapirus (Mammalia, Perissodactyla. J. Vert. Paleontol. 25, 72A (2005).

    • Google Scholar
  • 56.

    Hulbert, R. C. A new early Pleistocene tapir (Mammalia: Perissodactyla) from Florida, with a review of Blancan tapirs from the state. Bull. Fla. Mus. Nat. Hist 49, 67–126 (2010).

    • Google Scholar
  • 57.

    Hulbert, R. C., Wallace, S. C., Klippel, W. E. & Parmalee, P. W. Cranial morphology and systematics of an extraordinary sample of the late Neogene dwarf tapir, Tapirus polkensis (Olsen). J. Paleontol. 83, 238–262 (2009).

    • Google Scholar
  • 58.

    Abernethy, A. R. Extreme variation in the sagittal crest of Tapirus polkensis (Mammalia, Perissodactyla) at the Gray Fossil Site Northeastern TN. Electronic Theses and Dissertations. dc.etsu.edu/etd/1348 (2011).

  • 59.

    Wroe, S., Ferrara, T.L., McHenry, C.R., Curnoe, D. & Chamoli, U. The craniomandibular mechanics of being human. Proc. Roy. Soc. Lond. B. 277, https://doi.org/10.1098/rspb.2010.0509 (2010).

    • PubMed
    • Google Scholar
  • 60.

    Tseng, Z. J. Cranial function in a late Miocene Dinocrocuta gigantea (Mammalia: Carnivora) revealed by comparative finite element analysis. Biol. J. Linn. Soc 96, 51–67 (2009).

    • Google Scholar
  • 61.

    Attard, M. R. G., Chamoli, U., Ferrara, T. L., Rogers, T. L. & Wroe, S. Skull mechanics and implications for feeding behaviour in a large marsupial carnivore guild: the thylacine, Tasmanian devil and spotted‐tailed quoll. J. Zool. 285, 292–300 (2011).

    • Google Scholar
  • 62.

    Sharp, A. C. Comparative finite element analysis of the cranial performance of four herbivorous marsupials. J. Morphol. 276, 1230–1243 (2015).

    • PubMed
    • Google Scholar
  • 63.

    Snively, E., Fahlke, J. M. & Welsh, R. C. Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the Late Eocene of Egypt estimated by finite element analysis. PloS One 10, e0118380, https://doi.org/10.1371/journal.pone.0118380 (2015).

  • 64.

    Grine, F. E. Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. J. Hum. Evol. 15, 783–822 (1986).

    • Google Scholar
  • 65.

    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anthropol. 80, 447–460 (1989).

  • 66.

    Scott, R. S. et al. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436, 693–695 (2005).

  • 67.

    Scott, R. S. et al. Dental microwear texture analysis: technical considerations. J. Hum. Evol. 51, 339–349 (2006).

    • PubMed
    • Google Scholar
  • 68.

    DeSantis, L. R. G. Dental microwear textures: reconstructing diets of fossil mammals. Surf. Topogr 4, 023002, https://doi.org/10.1088/2051-672X/4/2/023002 (2016).

    • Article
    • Google Scholar
  • 69.

    Oldfield, C. C. et al. Finite element analysis of ursid cranial mechanics and the prediction of feeding behaviour in the extinct giant Agriotherium africanum. J. Zool. 286, 163–170 (2012).

    • Google Scholar
  • 70.

    Robinson, J. T. Prehominid dentition and hominid evolution. Evolution 8, 324–334 (1954).

    • Google Scholar
  • 71.

    Wolpoff, M. H. Sagittal cresting in the South African australopithecines. Am. J. Phys. Anthropol 40, 397–408 (1974).

    • Google Scholar
  • 72.

    Wood, B. A. & Stack, C. G. Does allometry explain the differences between “Gracile” and “Robust” australopithecines? Am. J. Phys. Anthropol. 52, 55–62 (1980).

    • Google Scholar
  • 73.

    Peters, C. R. Nut‐like oil seeds: Food for monkeys, chimpanzees, humans, and probably ape‐men. Am. J. Phys. Anthropol 73, 333–363 (1987).

  • 74.

    Teaford, M. F. & Ungar, P. S. Diet and the evolution of the earliest human ancestors. Proc. Natl. Acad. Sci. USA 97, 13506–13511 (2000).

  • 75.

    Martínez, L. M., Estebaranz-Sánchez, F., Galbany, J. & Pérez-Pérez, A. Testing dietary hypotheses of East African hominines using buccal dental microwear data. PloS One 11, e0165447, https://doi.org/10.1371/journal.pone.0165447 (2016).

  • 76.

    Ungar, P. S. & Sponheimer, M. The diets of early hominins. Science 334, 190–193 (2011).

  • 77.

    Taylor, A. B., Vogel, E. R. & Dominy, N. J. Food material properties and mandibular load resistance abilities in large-bodied hominoids. J. Hum. Evol. 55, 604–616 (2008).

    • PubMed
    • Google Scholar
  • 78.

    Vogel, E. R. et al. Food mechanical properties, feeding ecology, and the mandibular morphology of wild orangutans. J. Hum. Evol. 75, 110–124 (2014).

    • PubMed
    • Google Scholar
  • 79.

    Tobias, P.V. Olduvai Gorge (Vol. 2) The Cranium and Maxillary Dentition of Australopithecus (Zinjanthropus boisei) (London: Cambridge University Press 1967).

  • 80.

    Magill, C. R., Ashley, G. M., Domínguez-Rodrigo, M. & Freeman, K. H. Dietary options and behavior suggested by plant biomarker evidence in an early human habitat. Proc. Natl. Acad. Sci. USA 113, 2874–2879 (2016).

  • 81.

    Thomason, J. J. Cranial strength in relation to estimated biting forces in some mammals. Can. J. Zool. 69, 2326–2333 (1991).

    • Google Scholar
  • 82.

    Erickson, G. M., Catanese, J. & Keaveny, T. M. Evolution of the biomechanical material properties of the femur. Anat. Rec. 268, 115–124 (2002).

    • PubMed
    • Google Scholar
  • 83.

    Dumont, E. R., Grosse, I. R. & Slater, G. J. Requirements for comparing the performance of finite element models of biological structures. J. Theor. Biol. 256, 96–103 (2009).

  • 84.

    Ungar, P. S., Brown, C. A., Bergstrom, T. S. & Walker, A. Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning 25, 185–193 (2003).

    • PubMed
    • Google Scholar
  • 85.

    Ungar, P. S., Merceron, G. & Scott, R. S. Dental microwear texture analysis of Varswater Bovids and Early Pliocene paleoenvironments of Langebaanweg, Western Cape Province, South Africa. J. Mammal. Evol 14, 163–181 (2007).

    • Google Scholar
  • 86.

    Prideaux, G. J. et al. Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc. Natl. Acad. Sci. USA 106, 11646–11650 (2009).

  • 87.

    DeSantis, L. R. G. et al. Direct comparison of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PloS One 8, e71428, https://doi.org/10.1371/journal.pone.0071428 (2013).

  • 88.

    DeSantis, L. R. G. & Haupt, R. J. Cougars’ key to survival through the Late Pleistocene extinction: insights from dental microwear texture analysis. Biol. Letters 10, 2014.0203, https://doi.org/10.1098/rsbl.2014.0203 (2014).

    • Article
    • Google Scholar
  • 89.

    Scott, J. R. Dental microwear texture analysis of extant African Bovidae. Mammalia 76, 157–174 (2012).

    • Google Scholar
  • 90.

    Haupt, R. J., DeSantis, L. R. G., Green, J. L. & Ungar, P. S. Dental microwear texture as a proxy for diet in xenarthrans. J. Mammal. 94, 856–866 (2013).

    • Google Scholar
  • 91.

    Hedberg, C. & DeSantis, L. R. G. Dental microwear texture analysis of extant koalas: clarifying causal agents of microwear. J. Zool. 301, 206–214 (2016).

    • Google Scholar
  • 92.

    Dunn, O. J. Multiple comparisons using rank sums. Am. Soc. Qual 6, 241–252 (1964).

    • Google Scholar
  • 93.

    Cabin, R. J. & Mitchell, R. J. To Bonferroni or not to Bonferroni: when and how are the questions. Bull. Ecol. Soc. Am. 81, 246–248 (2000).

    • Google Scholar
  • 94.

    Nakagawa, S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav. Ecol 15, 1044–1045 (2004).

    • Google Scholar
  • 95.

    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).

    • PubMed
    • Google Scholar

  • Source: Ecology - nature.com

    Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus

    Mitochondrial genetic variation reveals phylogeographic structure and cryptic diversity in Trioza erytreae